ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B

82   0   0.0 ( 0 )
 نشر من قبل Sylvain Guiriec
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor (GBM) find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process, or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.

قيم البحث

اقرأ أيضاً

We present the detection of a blackbody component in GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). The MAXI/GSC detected the emission $sim$45 s prior to the ma in burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is well fit by a blackbody with the temperature of $1.0^{+0.3}_{-0.2}$ keV plus a power-law with the photon index of $-1.6 pm 0.3$. We discuss the radius to the photospheric emission and the main burst emission based on the observational properties. We stress the importance of the coordinated observations via various instruments collecting the high quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism.
We report the polarization measurement in prompt $gamma$-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter (GAP) aboard the small solar power sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the p rompt emission with 99.9% ($3.5 sigma$) confidence level, and the average polarization degree ($Pi$) of $27 pm 11$% with 99.4% ($2.9 sigma$) confidence level. Here the quoted errors are given at 1 $sigma$ confidence level for two parameters of interest. The systematic errors have been carefully included in this analysis, unlike any previous reports. Such a high $Pi$ can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of $sim Gamma^{-1}$. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more details.
125 - S. Guiriec (1 , 2 , 3 2017
GRB 120323A is a very intense short Gamma Ray Burst (GRB) detected simultaneously during its prompt gamma-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Win d satellite. GBM and Konus operate in the keV--MeV regime, however, the GBM range is broader both toward the low and the high parts of the gamma-ray spectrum. Analysis of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single-hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.
The Swift-XRT observations of the early X-ray afterglow of GRBs show that it usually begins with a steep decay phase. A possible origin of this early steep decay is the high latitude emission that subsists when the on-axis emission of the last dissip ating regions in the relativistic outflow has been switched-off. We wish to establish which of various models of the prompt emission are compatible with this interpretation. We successively consider internal shocks, photospheric emission, and magnetic reconnection and obtain the typical decay timescale at the end of the prompt phase in each case. Only internal shocks naturally predict a decay timescale comparable to the burst duration, as required to explain XRT observations in terms of high latitude emission. The decay timescale of the high latitude emission is much too short in photospheric models and the observed decay must then correspond to an effective and generic behavior of the central engine. Reconnection models require some ad hoc assumptions to agree with the data, which will have to be validated when a better description of the reconnection process becomes available.
We present spectro-polarimetric analysis of thisgrb using data from asat, fermi, and swift, to provide insights into the physical mechanisms of the prompt radiation and the jet geometry. Prompt emission from thisgrb was very bright (fluence $>10^{- 4}$~ergs~cm$^{-2}$) and had a complex structure composed of the superimposition of several pulses. The energy spectra deviate from the typical Band function to show a low energy peak $sim 15$~keV --- which we interpret as a power-law with two breaks, with a synchrotron origin. Alternately, the prompt spectra can also be interpreted as Comptonized emission, or a blackbody combined with a Band function. Time-resolved analysis confirms the presence of the low energy component, while the peak energy is found to be confined in the range of 100--200~keV. Afterglow emission detected by fermi-LAT is typical of an external shock model, and we constrain the initial Lorentz factor using the peak time of the emission. swift-XRT measurements of the afterglow show an indication for a jet break, allowing us to constrain the jet opening angle to $>$ 6$degr$. Detection of a large number of Compton scattered events by asat-CZTI provides an opportunity to study hard X-ray polarization of the prompt emission. We find that the burst has high, time-variable polarization, with the emission {bf have higher polarization} at energies above the peak energy. We discuss all observations in the context of GRB models and polarization arising due to {bf due to physical or geometric effects:} synchrotron emission from multiple shocks with ordered or random magnetic fields, Poynting flux dominated jet undergoing abrupt magnetic dissipation, sub-photospheric dissipation, a jet consisting of fragmented fireballs, and the Comptonization model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا