ترغب بنشر مسار تعليمي؟ اضغط هنا

NLO Leptoquark Production and Decay: The Narrow-Width Approximation and Beyond

116   0   0.0 ( 0 )
 نشر من قبل Jason Hammett
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the leptoquark model of Buchmuller, Ruckl and Wyler, focusing on a particular type of scalar ($R_2$) and vector ($U_1$) leptoquark. The primary aim is to perform the calculations for leptoquark production and decay at next-to-leading order (NLO) to establish the importance of the NLO contributions and, in particular, to determine how effective the narrow-width-approximation (NWA) is at NLO. For both the scalar and vector leptoquarks it is found that the NLO contributions are large, with the larger corrections occurring for the case vector leptoquarks. For the scalar leptoquark it is found that the NWA provides a good approximation for determining the resonant peak, however the NWA is not as effective for the vector leptoquark. For both the scalar and vector leptoquarks there are large contributions away from the resonant peak, which are missing from the NWA results, and these make a significant difference to the total cross-section.



قيم البحث

اقرأ أيضاً

174 - C. F. Uhlemann , N. Kauer 2009
A study of general properties of the narrow-width approximation (NWA) with polarization/spin decorrelation is presented. We prove for total rates of arbitrary resonant decay or scattering processes with an on-shell intermediate state decaying via a c ubic or quartic vertex that decorrelation effects vanish and the NWA is of order Gamma. Its accuracy is then determined numerically for all resonant 3-body decays involving scalars, spin-1/2 fermions or vector bosons. We specialize the general results to MSSM benchmark scenarios. Significant off-shell corrections can occur - similar in size to QCD corrections. We qualify the configurations in which a combined consideration is advisable. For this purpose, we also investigate process-independent methods to improve the NWA.
We present results of the simulation of electroweak Higgs boson production at the Large Hadron Collider using the NLO multi-jet merging framework provided by the general purpose event generator Herwig 7. For the hard processes, we use the HJets libra ry for the computation of the $mathcal{O}(alpha^3 alpha_{s}^{n-2})$ matrix elements for $pp to h+n$ jet production at LO for $n=2,3,4$ and NLO for $n=2,3$.
91 - N. Kauer 2008
A modified narrow-width approximation that allows for O(Gamma/M)-accurate predictions for resonant particle decay with similar intermediate masses is proposed and applied to MSSM processes to demonstrate its importance for searches for particle physics beyond the Standard Model.
We analyze the properties of the ACOT scheme for heavy quark production and make use of the MS-Bar massless results at NNLO and N3LO for the structure functions F2 and FL in neutral current deep-inelastic scattering to estimate the higher order corre ctions. The dominant heavy quark mass effects at higher orders can be taken into account using the massless Wilson coefficients together with an appropriate slow-rescaling prescription implementing the phase space constraints. Combining the exact ACOT scheme at NLO with these expressions should provide a good approximation to the full calculation in the ACOT scheme at NNLO and N3LO.
We compute the structure functions F2 and FL in the ACOT scheme for heavy quark production. We use the complete ACOT results to NLO, and make use of the MSbar massless results at NNLO and N3LO to estimate the higher order mass-dependent corrections. We show numerically that the dominant heavy quark mass effects can be taken into account using massless Wilson coefficients together with an appropriate rescaling prescription. Combining the exact NLO ACOT scheme with these expressions should provide a good approximation to the full calculation in the ACOT scheme at NNLO and N3LO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا