ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy Quark Production in the ACOT Scheme Beyond NLO

92   0   0.0 ( 0 )
 نشر من قبل Fredrick Olness
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the properties of the ACOT scheme for heavy quark production and make use of the MS-Bar massless results at NNLO and N3LO for the structure functions F2 and FL in neutral current deep-inelastic scattering to estimate the higher order corrections. The dominant heavy quark mass effects at higher orders can be taken into account using the massless Wilson coefficients together with an appropriate slow-rescaling prescription implementing the phase space constraints. Combining the exact ACOT scheme at NLO with these expressions should provide a good approximation to the full calculation in the ACOT scheme at NNLO and N3LO.

قيم البحث

اقرأ أيضاً

We compute the structure functions F2 and FL in the ACOT scheme for heavy quark production. We use the complete ACOT results to NLO, and make use of the MSbar massless results at NNLO and N3LO to estimate the higher order mass-dependent corrections. We show numerically that the dominant heavy quark mass effects can be taken into account using massless Wilson coefficients together with an appropriate rescaling prescription. Combining the exact NLO ACOT scheme with these expressions should provide a good approximation to the full calculation in the ACOT scheme at NNLO and N3LO.
We analyze the properties of the ACOT scheme for heavy quark production and make use of the MSbar massless results at NNLO and N3LO for the structure functions F2 and FL in neutral current deep-inelastic scattering to estimate the higher order correc tions. For this purpose we decouple the heavy quark mass entering the phase space from the one entering the dynamics of the short distance cross section. We show numerically that the phase space mass is generally more important. Therefore, the dominant heavy quark mass effects at higher orders can be taken into account using the massless Wilson coefficients together with an appropriate slow-rescaling prescription implementing the phase space constraints. Combining the exact ACOT scheme at NLO with these expressions should provide a good approximation to the missing full calculation in the ACOT scheme at NNLO and N3LO.
Processes of heavy quark production at HERA, TEVATRON and THERA energies are considered using the semihard ($k_T$ factorization) QCD approach with emphasis on the BFKL dynamics of gluon distributions.
Next-to-leading order (NLO) QCD predictions for the production of heavy quarks in proton-proton collisions are presented within three different approaches to quark mass, resummation and fragmentation effects. In particular, new NLO and parton shower simulations with POWHEG are performed in the ALICE kinematic regime at three different centre-of-mass energies, including scale and parton density variations, in order to establish a reliable baseline for future detailed studies of heavy-quark suppression in heavy-ion collisions. Very good agreement of POWHEG is found with FONLL, in particular for centrally produced D^0, D^+ and D^*+ mesons and electrons from charm and bottom quark decays, but also with the generally somewhat higher GM-VFNS predictions within the theoretical uncertainties. The latter are dominated by scale rather than quark mass variations. Parton density uncertainties for charm and bottom quark production are computed here with POWHEG for the first time and shown to be dominant in the forward regime, e.g. for muons coming from heavy-flavour decays. The fragmentation into D_s^+ mesons seems to require further tuning within the NLO Monte Carlo approach.
We study WZ production with anomalous couplings at $bar{n}$NLO QCD using the LoopSim method in combination with the Monte Carlo program VBFNLO. Higher order corrections to WZ production are dominated by additional hard jet radiation. Those contributi ons are insensitive to anomalous couplings and should thus be removed in analyses. We do this using a dynamical jet veto based on the transverse energy of the QCD and EW final state particles. This removes jet dominated events without introducing problematic logs like a fixed $p_{text{T}}$ jet veto.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا