ترغب بنشر مسار تعليمي؟ اضغط هنا

An experimental demonstration of room-temperature spin transport in n-type Germanium epilayers

75   0   0.0 ( 0 )
 نشر من قبل Masashi Shiraishi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first experimental demonstration of room-temperature spin transport in n-type Ge epilayers grown on a Si(001) substrate. By utilizing spin pumping under ferromagnetic resonance, which inherently endows a spin battery function for semiconductors connected with the ferromagnet, a pure spin current is generated in the n-Ge at room temperature. The pure spin current is detected by using the inverse spin Hall effect of either Pt or Pd electrode on the n-Ge. A theoretical model including a geometrical contribution allows to estimate a spin diffusion length in n-Ge at room temperature to be 660 nm. The temperature dependence of the spin relaxation time provides evidence for Elliott-Yafet spin relaxation mechanism.

قيم البحث

اقرأ أيضاً

We demonsrtate electrical spin injection and detection in $n$-type Ge ($n$-Ge) at room temperature using four-terminal nonlocal spin-valve and Hanle-effect measurements in lateral spin-valve (LSV) devices with Heusler-alloy Schottky tunnel contacts. The spin diffusion length ($lambda$$_{rm Ge}$) of the Ge layer used ($n sim$ 1 $times$ 10$^{19}$ cm$^{-3}$) at 296 K is estimated to be $sim$ 0.44 $pm$ 0.02 $mu$m. Room-temperature spin signals can be observed reproducibly at the low bias voltage range ($le$ 0.7 V) for LSVs with relatively low resistance-area product ($RA$) values ($le$ 1 k$Omega$$mu$m$^{2}$). This means that the Schottky tunnel contacts used here are more suitable than ferromagnet/MgO tunnel contacts ($RA ge$ 100 k$Omega$$mu$m$^{2}$) for developing Ge spintronic applications.
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a source and a we ll separated drain. The next generation electronics may operate on the spin of carriers instead of their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the long electron spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin injection and detection within the telecommunication window. In this letter, we demonstrate injection of pure spin currents (textit{i.e.} with no associated transport of electric charges) in germanium, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, exploiting the ability of lithographed nanostructures to manipulate the distribution of circularly-polarized light in the semiconductor. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect (ISHE) across a platinum stripe. These results broaden the palette of tools available for the realization of opto-spintronic devices.
67 - Tomoyuki Sasaki 2014
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However , RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in non-degenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observed the modulation of the Hanle-type spin precession signals, which is a characteristic spin dynamics in non-degenerate semiconductor. We obtained long spin transport of more than 20 {mu}m and spin rotation, greater than 4{pi} at RT. We also observed gate-induced modulation of spin transport signals at RT. The modulation of spin diffusion length as a function of a gate voltage was successfully observed, which we attributed to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to make avenues to create of practical Si-based spin MOSFETs.
The n-type doping of Ge is a self-limiting process due to the formation of vacancy-donor complexes (DnV with n <= 4) that deactivate the donors. This work unambiguously demonstrates that the dissolution of the dominating P4V clusters in heavily phosp horus-doped Ge epilayers can be achieved by millisecond-flash lamp annealing at about 1050 K. The P4V cluster dissolution increases the carrier concentration by more than three-fold together with a suppression of phosphorus diffusion. Electrochemical capacitance-voltage measurements in conjunction with secondary ion mass spectrometry, positron annihilation lifetime spectroscopy and theoretical calculations enabled us to address and understand a fundamental problem that has hindered so far the full integration of Ge with complementary-metal-oxide-semiconductor technology.
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electrical switching in an antiferromagnetic memory at room temperature. When the inversion-partner sites are occupied by different atoms, a non-zero global spin-polarization is generated by the applied current which can switch a ferromagnet, as reported at low temperatures in the diluted magnetic semiconductor (Ga,Mn)As. Here we demonstrate the effect of the global current-induced spin polarization in a counterpart crystal-symmetry material NiMnSb which is a member of the broad family of magnetic Heusler compounds. It is an ordered high-temperature ferromagnetic metal whose other favorable characteristics include high spin-polarization and low damping of magnetization dynamics. Our experiments are performed on strained single-crystal epilayers of NiMnSb grown on InGaAs. By performing all-electrical ferromagnetic resonance measurements in microbars patterned along different crystal axes we detect room-temperature spin-orbit torques generated by effective fields of the Dresselhaus symmetry. The measured magnitude and symmetry of the current-induced torques are consistent with our relativistic density-functional theory calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا