ﻻ يوجد ملخص باللغة العربية
We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $leftvert 0rightrangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B{u}ttikers voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $leftvert 0rightrangle $ $equiv $ $ leftvert uparrow downarrow rightrangle $ and $leftvert 1rightrangle equiv $ $leftvert downarrow uparrow rightrangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $leftvert 0rightrangle $ and $leftvert 1right rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Dynamical quantum jumps were initially conceived by Bohr as objective events associated with the emission of a light quantum by an atom. Since the early 1990s they have come to be understood as being associated rather with the detection of a photon b
In the independent electron approximation, the average (energy/charge/entropy) current flowing through a finite sample S connected to two electronic reservoirs can be computed by scattering theoretic arguments which lead to the famous Landauer-Buttik
Quantum weirdness has been in the news recently, thanks to an ingenious new experiment by a team led by Roland Hanson, at the Delft University of Technology. Much of the coverage presents the experiment as good (even conclusive) news for spooky actio
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie
We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. W