ﻻ يوجد ملخص باللغة العربية
The mass-luminosity (M-L), mass-radius (M-R) and mass-effective temperature ($M-T_{eff}$) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to $leq 3%$ and luminosities accurate to $leq 30%$ (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7$M_{odot}$ within the mass range studied of $0.38-32M_{odot}$. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical ($L propto M^{alpha}$), are shown to be preferable to a single linear, quadratic or cubic equation representing as an alternative MLR. Stellar radius evolution within the main-sequence for stars with $M>1M_{odot}$ is clearly evident on the M-R diagram, but it is not the clear on the $M-T_{eff}$ diagram based on published temperatures. Effective temperatures can be calculated directly using the well-known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main-sequence for stars with $M>1M_{odot}$ is clearly visible on the $M-T_{eff}$ diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of $sim 6%$, as long as its observed radius error is adequately small (<1%) and its observed mass error is reasonably small (<6%).
In this work, a mass-effective temperature-surface gravity relation (MTGR) is developed for main sequence stars in the range of 6400 K < $T_{rm eff}$ < 20000 K with log$g$ > 3.44. The MTGR allows the simple estimation of the masses of stars from thei
The stellar mass-luminosity relation (MLR) is one of the most famous empirical laws, discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, h
We present a Mass-Luminosity Relation (MLR) for red dwarfs spanning a range of masses from 0.62 Msun to the end of the stellar main sequence at 0.08 Msun. The relation is based on 47 stars for which dynamical masses have been determined, primarily us
We investigate the wind of lambda And, a solar-mass star that has evolved off the main sequence becoming a sub-giant. We present spectropolarimetric observations and use them to reconstruct the surface magnetic field of lambda And. Although much olde
We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 star