ﻻ يوجد ملخص باللغة العربية
In the noisy tensor completion problem we observe $m$ entries (whose location is chosen uniformly at random) from an unknown $n_1 times n_2 times n_3$ tensor $T$. We assume that $T$ is entry-wise close to being rank $r$. Our goal is to fill in its missing entries using as few observations as possible. Let $n = max(n_1, n_2, n_3)$. We show that if $m = n^{3/2} r$ then there is a polynomial time algorithm based on the sixth level of the sum-of-squares hierarchy for completing it. Our estimate agrees with almost all of $T$s entries almost exactly and works even when our observations are corrupted by noise. This is also the first algorithm for tensor completion that works in the overcomplete case when $r > n$, and in fact it works all the way up to $r = n^{3/2-epsilon}$. Our proofs are short and simple and are based on establishing a new connection between noisy tensor completion (through the language of Rademacher complexity) and the task of refuting random constant satisfaction problems. This connection seems to have gone unnoticed even in the context of matrix completion. Furthermore, we use this connection to show matching lower bounds. Our main technical result is in characterizing the Rademacher complexity of the sequence of norms that arise in the sum-of-squares relaxations to the tensor nuclear norm. These results point to an interesting new direction: Can we explore computational vs. sample complexity tradeoffs through the sum-of-squares hierarchy?
We obtain the first polynomial-time algorithm for exact tensor completion that improves over the bound implied by reduction to matrix completion. The algorithm recovers an unknown 3-tensor with $r$ incoherent, orthogonal components in $mathbb R^n$ fr
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a
We give a new approach to the dictionary learning (also known as sparse coding) problem of recovering an unknown $ntimes m$ matrix $A$ (for $m geq n$) from examples of the form [ y = Ax + e, ] where $x$ is a random vector in $mathbb R^m$ with at most
Performing inference in graphs is a common task within several machine learning problems, e.g., image segmentation, community detection, among others. For a given undirected connected graph, we tackle the statistical problem of exactly recovering an
We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers. The guarantees of our algorithms improve in many cases significantly over the best previous ones, obtained in recent w