ﻻ يوجد ملخص باللغة العربية
We incorporate nonlinear covers of quasisplit reductive groups into the Langlands program, defining an L-group associated to such a cover. This L-group is an extension of the absolute Galois group of a local or global field $F$ by a complex reductive group. The L-group depends on an extension of a quasisplit reductive $F$-group by $mathbf{K}_2$, a positive integer $n$ (the degree of the cover), an injective character $epsilon colon mu_n rightarrow {mathbb C}^times$, and a separable closure of $F$. Our L-group is consistent with previous work on covering groups, and its construction is contravariantly functorial for certain well-aligned homomorphisms. An appendix surveys torsors and gerbes on the etale site, as they are used in a crucial step in the construction.
We incorporate covers of quasisplit reductive groups into the Langlands program, defining an L-group associated to such a cover. We work with all covers that arise from extensions of quasisplit reductive groups by $mathbf{K}_2$ -- the class studied b
Let G be a profinite group which is topologically finitely generated, p a prime number and d an integer. We show that the functor from rigid analytic spaces over Q_p to sets, which associates to a rigid space Y the set of continuous d-dimensional pse
In one article, the author has defined an L-group associated to a cover of a quasisplit reductive group over a local or global field. In another article, Wee Teck Gan and Fan Gao define (following an unpublished letter of the author) an L-group assoc
Let k be any field. We consider the Hopf-Schur group of k, defined as the subgroup of the Brauer group of k consisting of classes that may be represented by homomorphic images of Hopf algebras over k. We show here that twisted group algebras and abel
We explicitly compute the adjoint L-function of those L-packets of representations of the group GSp(4) over a p-adic field of characteristic zero that contain non-supercuspidal representations. As an application we verify a conjecture of Gross-Prasad