ﻻ يوجد ملخص باللغة العربية
In one article, the author has defined an L-group associated to a cover of a quasisplit reductive group over a local or global field. In another article, Wee Teck Gan and Fan Gao define (following an unpublished letter of the author) an L-group associated to a cover of a pinned split reductive group over a local or global field. In this short note, we give an isomorphism between these L-groups. In this way, the results and conjectures discussed by Gan and Gao are compatible with those of the author. Both support the same Langlands-type conjectures for covering groups.
We incorporate covers of quasisplit reductive groups into the Langlands program, defining an L-group associated to such a cover. We work with all covers that arise from extensions of quasisplit reductive groups by $mathbf{K}_2$ -- the class studied b
Let $pi$ be an irreducible cuspidal automorphic representation of a quasi-split unitary group ${rm U}_{mathfrak n}$ defined over a number field $F$. Under the assumption that $pi$ has a generic global Arthur parameter, we establish the non-vanishing
We establish the functorial transfer of generic, automorphic representations from the quasi-split general spin groups to general linear groups over arbitrary number fields, completing an earlier project. Our results are definitive and, in particular,
We prove Langlands functoriality for the generic spectrum of general spin groups (both odd and even). Contrary to other recent instances of functoriality, our resulting automorphic representations on the general linear group will not be self-dual. To
Let $k/k$ be a finite purely inseparable field extension and let $G$ be a reductive $k$-group. We denote by $G=R_{k/k}(G)$ the Weil restriction of $G$ across $k/k$, a pseudo-reductive group. This article gives bounds for the exponent of the geometric