ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison of L-groups for covers of split reductive groups

120   0   0.0 ( 0 )
 نشر من قبل Martin Weissman
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In one article, the author has defined an L-group associated to a cover of a quasisplit reductive group over a local or global field. In another article, Wee Teck Gan and Fan Gao define (following an unpublished letter of the author) an L-group associated to a cover of a pinned split reductive group over a local or global field. In this short note, we give an isomorphism between these L-groups. In this way, the results and conjectures discussed by Gan and Gao are compatible with those of the author. Both support the same Langlands-type conjectures for covering groups.



قيم البحث

اقرأ أيضاً

196 - Martin H. Weissman 2015
We incorporate covers of quasisplit reductive groups into the Langlands program, defining an L-group associated to such a cover. We work with all covers that arise from extensions of quasisplit reductive groups by $mathbf{K}_2$ -- the class studied b y Brylinski and Deligne. We use this L-group to parameterize genuine irreducible representations in many contexts, including covers of split tori, unramified representations, and discrete series for double covers of semisimple groups over $mathbb R$. An appendix surveys torsors and gerbes on the etale site, as they are used in the construction of the L-group.
83 - Dihua Jiang , Lei Zhang 2018
Let $pi$ be an irreducible cuspidal automorphic representation of a quasi-split unitary group ${rm U}_{mathfrak n}$ defined over a number field $F$. Under the assumption that $pi$ has a generic global Arthur parameter, we establish the non-vanishing of the central value of $L$-functions, $L(frac{1}{2},pitimeschi)$, with a certain automorphic character $chi$ of ${rm U}_1$, for the case of ${mathfrak n}=2,3,4$, and for the general ${mathfrak n}geq 5$ by assuming a conjecture on certain refined properties of global Arthur packets. In consequence, we obtain some simultaneous non-vanishing results for the central $L$-values by means of the theory of endoscopy.
We establish the functorial transfer of generic, automorphic representations from the quasi-split general spin groups to general linear groups over arbitrary number fields, completing an earlier project. Our results are definitive and, in particular, we determine the image of this transfer completely and give a number of applications.
83 - Mahdi Asgari 2004
We prove Langlands functoriality for the generic spectrum of general spin groups (both odd and even). Contrary to other recent instances of functoriality, our resulting automorphic representations on the general linear group will not be self-dual. To gether with cases of classical groups, this completes the list of cases of split reductive groups whose L-groups have classical derived groups. The important transfer from GSp(4) to GL(4) follows from our result as a special case.
Let $k/k$ be a finite purely inseparable field extension and let $G$ be a reductive $k$-group. We denote by $G=R_{k/k}(G)$ the Weil restriction of $G$ across $k/k$, a pseudo-reductive group. This article gives bounds for the exponent of the geometric unipotent radical $mathscr{R}_{u}(G_{bar{k}})$, focusing on the case $G=GL_n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا