ﻻ يوجد ملخص باللغة العربية
We study the two-dimensional Hubbard model in the weak-coupling regime and compare the self-energy obtained from various approximate diagrammatic schemes to the result of diagrammatic Monte Carlo simulations, which sum up all weak-coupling diagrams up to a given order. While dynamical mean-field theory provides a good approximation for the local part of the self-energy, including its frequency dependence, the partial summation of bubble and/or ladder diagrams typically yields worse results than second order perturbation theory. Even widely used self-consistent schemes such as GW or the fluctuation-exchange approximation (FLEX) are found to be unreliable. Combining the dynamical mean-field self-energy with the nonlocal component of GW in GW+DMFT yields improved results for the local self-energy and nonlocal self-energies of the correct order of magnitude, but here, too, a more reliable scheme is obtained by restricting the nonlocal contribution to the second order diagram. FLEX+DMFT is found to give accurate results in the low-density regime, but even worse results than FLEX near half-filling.
Partial bosonisation of the two-dimensional Hubbard model focuses the functional renormalisation flow on channels in which interactions become strong and local order sets in. We compare the momentum structure of the four-fermion vertex, obtained on t
We find that imposing the crossing symmetry in the iteration process considerably extends the range of convergence for solutions of the parquet equations for the Hubbard model. When the crossing symmetry is not imposed, the convergence of both simple
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubi
Cooperation and competition between the antiferromagnetic, d-wave superconducting and Mott-insulating states are explored for the two-dimensional Hubbard model including nearest and next-nearest-neighbor hoppings at zero temperature. Using the variat
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe