ﻻ يوجد ملخص باللغة العربية
We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum ($p_T$) and radius, the minimum associated jet $p_T$ and the association radius is computed upto next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of $k_T$ subjets of an anti-$k_T$ jet is found to be an observable that leads to a rather uniform prediction across different MCs, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.
We estimate the number of quark jets in QCD multi-jet final states at hadron colliders. In the estimation, we develop the calculation of jet rates into that of quark jet rates. From the calculation, we estimate the improvement on the signal-to-backgr
We present a model-independent study aimed at characterizing the nature of possible resonances in the jet-photon or jet-$Z$ final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication
We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We i
We measure the subjet multiplicity M in jets reconstructed with a successive combination type of jet algorithm (kT). We select jets with 55<pT<100 GeV and |eta|<0.5. We compare similar samples of jets at sqrt(s)=1800 and 630 GeV. The HERWIG Monte Car
Whether quark- and gluon-initiated jets are modified differently by the quark-gluon plasma produced in heavy-ion collisions is a long-standing question that has thus far eluded a definitive experimental answer. A crucial complication for quark-gluon