ترغب بنشر مسار تعليمي؟ اضغط هنا

On the contribution of the double Drell-Yan process to WW and ZZ production at the LHC

72   0   0.0 ( 0 )
 نشر من قبل Mieczyslaw Witold Krasny
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate consequences of an assumption that the discrepancy of the predicted and observed W+W- production cross sections at the LHC is caused by the missing contribution of the double Drell-Yan process (DDYP). Using our simple model of DDYP of Ref. [1] we show that inclusion of this production mechanism leads to a satisfactory, parameter-free description of the two-lepton mass distribution for 0-jet W+W- events and the four-lepton mass distribution for ZZ events. In such a scenario the Higgs-boson contribution is no longer necessary to describe the data. An experimental programme to prove or falsify such an assumption is proposed.

قيم البحث

اقرأ أيضاً

Generalized transverse momentum dependent parton distributions (GTMDs) are the most general parton correlation functions of hadrons. By considering the exclusive double Drell-Yan process it is shown for the first time how quark GTMDs can be measured. Specific GTMDs can be addressed by means of polarization observables.
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formu la due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.
The Drell-Yan process provides important information on the internal structure of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions des cribing the pion induced Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front constituent quark model, the spectator model, and available parametrizations of TMDs extracted from the experimental data. TMD evolution is implemented at Next-to-Leading Logarithmic precision for the first time for all asymmetries. Our results are compatible with the first experimental information, help to interpret the data from ongoing experiments, and will allow one to quantitatively assess the models in future when more precise data will become available.
75 - Peter Kroll 2016
In this talk it is reported on analyses of l p -> l pi+ n and pi- p -> l+ l- n within the handbag approach. It is argued that recent measurements of hard pion production performed by HERMES and CLAS clearly indicate the occurrence of strong contribut ions from transversely polarized photons. The gamma*T -> pi transitions are described by the transversity GPDs accompanied by twist-3 pion wave functions. The experiments also require strong contributions from the pion pole which can be modeled as a classical one-pion exchange. With these extensions the handbag approach leads to results on cross sections and spin asymmetries in fair agreement with experiment. This approach is also used for an estimate of the partial cross sections for the exclusive Drell-Yan process.
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar. In addition to nuclear smearing corrections that are known to be important at large values of the nucleons parton momentum fraction x_N, we also consider dynamical off-shell nucleon corrections associated with the modifications of the bound nucleon structure inside the deuteron, which we find to be significant at intermediate and large x_N values. We also provide estimates of the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at Fermilab and J-PARC which aim to determine the dbar/ubar ratio for x < 0.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا