ﻻ يوجد ملخص باللغة العربية
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of around 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.
The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) are stud- ied in buried amorphous Si (a-Si) layers in which SPE is not retarded by H. As, P, B and Al profiles were formed by multiple energy ion implantation over a con- centrat
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and conduction ban
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begi
The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) is stud- ied in amorphous germanium (a-Ge) layers formed by ion implantation on <100> Ge substrates. The SPE rates were measured with a time-resolved reflectivity (TRR) system be
The direct growth of semiconductors over metals by molecular beam epitaxy is a difficult task due to the large differences in crystallization energy between these types of materials. This aspect is problematic in the context of spintronics, where coh