ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

110   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of around 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.



قيم البحث

اقرأ أيضاً

The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) are stud- ied in buried amorphous Si (a-Si) layers in which SPE is not retarded by H. As, P, B and Al profiles were formed by multiple energy ion implantation over a con- centrat ion range of 1 - 30 x 1019 /cm3. Anneals were performed in air over the temperature range 460-660 oC and the rate of interface motion was monitored us- ing time resolved reflectivity. The dopant-enhanced SPE rates were modeled with the generalized Fermi level shifting model using degenerate semiconductor statis- tics. The effect of band bending between the crystalline and amorphous sides of the interface is also considered.
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and conduction ban ds.[1,2] Recently, bulk Si hyperdoped with chalcogens or transition metals has been demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors.[3-5] Intermediate-band nanowires could potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells,[6-9] but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, we show a CMOS-compatible technique based on non-equilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, we form Se-hyperdoped Si/SiO2 core/shell nanowires that have a room-temperature sub-band gap optoelectronic photoresponse when configured as a photoconductor device.
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begi n with an extensive survey of the investigations of liquid silicon pursued over three decades, with salient experimental, theoretical and simulation results. Following which we present various scenarios put forward to rationalize the density and related anomalies often observed in water and other network forming liquids. After which we present the more recent investigations (both simulation and experimental works) of the phase behavior of Silicon. Since a significant part of metastable silicon work is on a classical empirical potential an important question to address is the reliability of this potential in describing the behavior of silicon. To provide a critical assessment of the applicability of classical simulation results to real silicon we present a comparison of the structural, dynamical, and thermodynamic quantities obtained from the SW potential with those from ab initio simulations and with available experimental data. We also discuss the sensitivity of the thermodynamic properties to model parameters.
The kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) is stud- ied in amorphous germanium (a-Ge) layers formed by ion implantation on <100> Ge substrates. The SPE rates were measured with a time-resolved reflectivity (TRR) system be tween 300 and 540 degC and found to have an activation energy of (2.15 +/- 0.04) eV. To interpret the TRR measurements the refractive indices of the a-Ge layers were measured at the two wavelengths used, 1.152 and 1.532 {mu}m. For the first time, SPE rate measurements on thick a-Ge layers (>3 {mu}m) have also been performed to distinguish between bulk and near-surface SPE growth rate behavior. Possible effects of explosive crystallization on thick a-Ge layers are considered. When H is present in a-Ge it is found to have a considerably greater retarding affect on the SPE rate than for similar concentrations in a-Si layers. Hydrogen is found to reduce the pre-exponential SPE velocity factor but not the activation energy of SPE. However, the extent of H indiffusion into a-Ge surface layers during SPE is about one order of magnitude less that that observed for a-Si layers. This is thought to be due to the lack of a stable surface oxide on a-Ge. Dopant enhanced kinetics were measured in a-Ge layers containing uniform concentration profiles of implanted As or Al spanning the concentration regime 1-10 x1019 /cm-3. Dopant compensation effects are also observed in a-Ge layers containing equal concentrations of As and Al, where the SPE rate is similar to the intrinsic rate. Various SPE models are considered in light of these data.
The direct growth of semiconductors over metals by molecular beam epitaxy is a difficult task due to the large differences in crystallization energy between these types of materials. This aspect is problematic in the context of spintronics, where coh erent spin-injection must proceed via ballistic transport through sharp interfacial Schottky barriers. We report the realization of single-crystalline ferromagnet/semiconductor/ferromagnet hybrid trilayers using solid-phase epitaxy, with combinations of Fe3Si, Co2FeSi, and Ge. The slow annealing of amorphous Ge over Fe3Si results in a crystalline filmlm identified as FeGe2. When the annealing is performed over Co2FeSi, reflected high-energy electron diffraction and X-ray diffraction indicate the creation of a different crystalline Ge(Co,Fe,Si) compound, which also preserves growth orientation. It was possible to observe independent magnetization switching of the ferromagnetic layers in a Fe3Si/FeGe2/Co2FeSi sample, thanks to the different coercive fields of the two metals and to the quality of the interfaces. This result is a step towards the implementation of vertical spin-selective transistor-like devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا