ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of two embedded clusters with WISE in the high Galactic latitude cloud HRK 81.4-77.8

133   0   0.0 ( 0 )
 نشر من قبل Denilso da Silva Camargo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular clouds at very high latitude ($b>60^{circ}$) away from the Galactic plane are rare and in general are expected to be non-star-forming. However, we report the discovery of two embedded clusters (Camargo 438 and Camargo 439) within the high-latitude molecular cloud HRK 81.4-77.8 using WISE. Camargo 439 with Galactic coordinates $ell=81.11^{circ}$ and $b=-77.84^{circ}$ is an $sim2$ Myr embedded cluster (EC) located at a distance from the Sun of $d_{odot}=5.09pm0.47$ kpc. Adopting the distance of the Sun to the Galactic centre $R_{odot}=7.2$ kpc we derive for Camargo 439 a Galactocentric distance of $R_{GC}=8.70pm0.26$ kpc and a vertical distance from the plane of $-4.97pm0.46$ kpc. Camargo 438 at $ell=79.66^{circ}$ and $b=-78.86^{circ}$ presents similar values. The derived parameters for these two ECs put HRK 81.4-77.8 in the halo at a distance from the Galactic centre of $sim8.7$ kpc and $sim5.0$ kpc from the disc. Star clusters provide the only direct means to determine the high latitude molecular cloud distances. The present study shows that the molecular cloud HRK 81.4-77.8 is currently forming stars, apparently an unprecedented event detected so far among high latitude clouds. We carried out a preliminary orbit analysis. It shows that this ECs are the most distant known embedded clusters from the plane and both cloud and clusters are probably falling ballistically from the halo onto the Galactic disc, or performing a flyby.

قيم البحث

اقرأ أيضاً

Careful analyses of photometric and star count data available for the nine putative young clusters identified by Camargo et al. (2015, 2016) at high Galactic latitudes reveal that none of the groups contain early-type stars, and most are not signific ant density enhancements above field level. 2MASS colours for stars in the groups match those of unreddened late-type dwarfs and giants, as expected for contamination by (mostly) thin disk objects. A simulation of one such field using only typical high latitude foreground stars yields a colour-magnitude diagram that is very similar to those constructed by Camargo et al. (2015, 2016) as evidence for their young groups as well as the means of deriving their reddenings and distances. Although some of the fields are coincident with clusters of galaxies, one must conclude that there is no evidence that the putative clusters are extremely young stellar groups.
We carried out a search for new infrared star clusters, stellar groups and candidates using WISE images, which are very sensitive to dust emission nebulae. We report the discovery of 437 embedded clusters and stellar groups that show a variety of str uctures, both in the stellar and nebular components. Pairs or small groupings of clusters are observed, suggesting multiple generations at the early formation stages. The resulting catalogue provides Galactic and equatorial coordinates, together with angular sizes for all objects. The nature of a representative test sub-sample of 14 clusters is investigated in detail by means of 2MASS photometry. The colour magnitude diagrams and radial density distributions characterize them as stellar clusters. The 437 new objects were found in the ranges $145^circ,leq,ell,leq 290^circ$ and $-25^circ,leq,b,leq 20^circ$, and they appear to be a major object source for future studies of star cluster formation and their early evolution. WISE is a powerful tool to further probe for very young clusters throughout the disk.
We report the discovery of two new Galactic candidate luminous blue variable (cLBV) stars via detection of circular shells (typical of known confirmed and cLBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 um in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered cLBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R- and I-bands by 0.68pm0.10 mag and 0.61pm0.04 mag, respectively, during the last 13-18 years, while the second one (known as Hen 3-1383) varies its B,V,R,I and K_s brightnesses by simeq 0.5-0.9 mag on time-scales from 10 days to decades. We also found significant changes in the spectrum of Hen 3-1383 on a timescale of simeq 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered cLBVs might be directly related to their possible runaway status.
We have conducted B, g, V, and R-band imaging in a 45x40 arcmin^2 field containing part of the high Galactic latitude translucent cloud MBM32, and correlated the intensity of diffuse optical light S_ u(lambda) with that of 100 micron emission S_ u(10 0um). A chi^2 minimum analysis is applied to fit a linear function to the measured correlation and derive the slope parameter b(lambda)= Delta S_ u(lambda) / Delta S_ u(100um) of the best-fit linear function. Compiling a sample by combining our b(lambda) and published ones, we show that the b(lambda) strength varies from cloud to cloud by a factor of 4. Finding that b(lambda) decreases as S_ u(100um) increases in the sample, we suggest that a non-linear correlation including a quadratic term of S_ u(100um)^2 should be fitted to the measured correlation. The variation of optical depth, which is A_V = 0.16 - 2.0 in the sample, can change b(lambda) by a factor of 2 - 3. There would be some contribution to the large b(lambda) variation from the forward-scattering characteristic of dust grains which is coupled to the non-isotropic interstellar radiation field (ISRF). Models of the scattering of diffuse Galactic light (DGL) underestimate the b(lambda) values by a factor of 2. This could be reconciled by deficiency in UV photons in the ISRF or by a moderate increase in dust albedo. Our b(lambda) spectrum favors a contribution from extended red emission (ERE) to the diffuse optical light; b(lambda) rises from B to V faster than the models, seems to peak around 6000 AA, and decreases towards long wavelengths. Such a characteristic is expected from the models in which the DGL is combined with ERE.
Deep H$alpha$ images of a faint emission complex 4.0 x 5.5 degrees in angular extent and located far off the Galactic plane at l = 70.0 degrees, b=-21.5 degrees reveal numerous thin filaments suggestive of a supernova remnants shock emission. Low dis persion optical spectra covering the wavelength range 4500 - 7500 A show only Balmer line emissions for one filament while three others show a Balmer dominated spectrum along with weak [N I] 5198, 5200 A, [O I] 6300, 6364 A, [N II] 6583 A, [S II] 6716, 6731 A and in one case [O III] 5007 A line emission. Many of the brighter H$alpha$ filaments are visible in near UV GALEX images presumably due to C III] 1909 A line emission. ROSAT All Sky Survey images of this region show a faint crescent shaped X-ray emission nebula coincident with the portion of the H$alpha$ nebulosity closest to the Galactic plane. The presence of long, thin Balmer dominated emission filaments with associated UV emission and coincident X-ray emission suggests this nebula is a high latitude Galactic supernova remnant despite a lack of known associated nonthermal radio emission. Relative line intensities of the optical lines in some filaments differ from commonly observed [S II]/H$alpha$ > 0.4 radiative shocked filaments and typical Balmer filaments in supernova remnants. We discuss possible causes for the unusual optical SNR spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا