ترغب بنشر مسار تعليمي؟ اضغط هنا

New Galactic embedded clusters and candidates from a WISE Survey

391   0   0.0 ( 0 )
 نشر من قبل Denilso da Silva Camargo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a search for new infrared star clusters, stellar groups and candidates using WISE images, which are very sensitive to dust emission nebulae. We report the discovery of 437 embedded clusters and stellar groups that show a variety of structures, both in the stellar and nebular components. Pairs or small groupings of clusters are observed, suggesting multiple generations at the early formation stages. The resulting catalogue provides Galactic and equatorial coordinates, together with angular sizes for all objects. The nature of a representative test sub-sample of 14 clusters is investigated in detail by means of 2MASS photometry. The colour magnitude diagrams and radial density distributions characterize them as stellar clusters. The 437 new objects were found in the ranges $145^circ,leq,ell,leq 290^circ$ and $-25^circ,leq,b,leq 20^circ$, and they appear to be a major object source for future studies of star cluster formation and their early evolution. WISE is a powerful tool to further probe for very young clusters throughout the disk.

قيم البحث

اقرأ أيضاً

Only four globular cluster planetary nebulae (GCPN) are known so far in the Milky Way. About 50 new globular clusters have been recently discovered towards the Galactic bulge. We present a search for planetary nebulae within 3 arcmin of the new globu lar clusters, revealing the identification of new candidate GCPN. These possible associations are PN SB 2 with the GC Minni 06, PN G354.9-02.8 with the GC Minni 11, PN G356.8-03.6 with the GC Minni 28, and PN Pe 2-11 with the GC Minni 31. We discard PN H 2-14 located well within the projected tidal radius of the new globular cluster FSR1758 because they have different measured radial velocities. These are interesting objects that need follow-up observations (especially radial velocities) in order to confirm membership, and to measure their physical properties in detail. If confirmed, this would double the total number of Galactic GCPN.
Over the past decades open clusters have been the subject of many studies. Such studies are crucial considering that the universality of the Initial Mass Function is still a subject of current investigations. Praesepe is an interesting open cluster f or the study of the stellar and substellar mass function (MF), considering its intermediate age and its nearby distance. Here we present the results of a wide field, near-infrared study of Praesepe using the Data Release 9 (DR9) of the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS). We obtained cluster candidates of Praesepe based on a 3sigma astrometric and 5 band photometric selection. We derived a binary frequency for Praesepe of 25.6+/-3.0% in the 0.2-0.45Msol mass range, 19.6+/-3.0% for 0.1-0.2Msol, and 23.2+/-5.6% for 0.07-0.1Msol. We also studied the variability of the cluster candidates of Praesepe and we conclude that seven objects could be variable. We inferred the luminosity function of Praesepe in the Z- and J- bands and derived its MF. We observe that our determination of the MF of Praesepe differs from previous studies: while previous MFs present an increase from 0.6 to 0.1Msol, our MF shows a decrease. We looked at the MF of Praesepe in two different regions of the cluster, i.e. within and beyond 1.25deg, and we observed that both regions present a MF which decrease to lower masses. We compared our results with the Hyades, the Pleiades and alpha Per MF in the mass range of 0.072-0.6Msol and showed that the Praesepe MF is more similar to alpha Per although they are respectively aged ~85 and ~600Myr. Even though of similar age, the Praesepe remains different than the Hyades, with a decrease in the MF of only ~0.2 dex from 0.6 down to 0.1Msol, compared to ~1 dex for the Hyades.
The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC) is a photometric sky survey that covers nearly 6 000 deg^2 towards Galactic anti-center in g r i bands. Half of its survey field locates on the Galactic Anti-center disk, which makes XSTPS-GAC highly suitable for searching new open clusters in the GAC region. In this paper, we report new open cluster candidates discovered in this survey, as well as properties of these open cluster candidates, such as age, distance and reddening, derived by isochrone fitting in the color-magnitude diagram (CMD). These open cluster candidates are stellar density peaks detected in the star density maps by applying the method from Koposov et al. (2008). Each candidate is inspected on its true color image composed from XSTPS-GAC three band images. Then its CMD is checked, in order to identify whether the central region stars have a clear isochrone-like trend differing from the background stars. The parameters derived from isochrone fitting for these candidates are mainly based on three band photometry of XSTPS-GAC. Meanwhile, when these new candidates are able to be seen clearly on 2MASS, their parameters are also derived based on 2MASS (J-H, J) CMD. Finally, there are 320 known open clusters rediscovered and 24 new open cluster candidates discovered in this work. Further more, the parameters of these new candidates, as well as another 11 known recovered open clusters, are properly determined for the first time.
Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane ($sim5$ kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. This work aims to clarify if our previous detection of star clusters far away from the disc represents just an episodic event or if the star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs with unusually high latitude and distance from the Galactic disc midplane. All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of $sim3$ kpc, C 1099 with $sim2$ kpc, and C 1101 with $sim1.8$ kpc. According to the derived parameters there occur ECs located below and above the disc, which is an evidence of widespread star cluster formation throughout the Galactic halo. Thus, this study represents a paradigm shift, in the sense that a sterile halo becomes now a host of ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountain or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought and since most ECs do not survive the textit{infant mortality} it may be raining stars from the halo into the disc, and/or the halo harbours generations of stars formed in clusters like those hereby detected.
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the $J$-, $H$- and $K_s$- bands obtained from the Vista Variables in the Via Lactea (VVV) Survey. We performed in each cluster field a variability search using Stetsons variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude $(J-K_s,K_s)$ and color-color $(H-K_s,J-H)$ diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, $delta$ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the Physics Of Eclipsing Binaries (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately $80^{circ}$. Their surface temperatures range between $3500$K and $8000$K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا