ترغب بنشر مسار تعليمي؟ اضغط هنا

A comprehensive study of the magnetic, structural and transport properties of the III-V ferromagnetic semiconductor InMnP

155   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The manganese induced magnetic, electrical and structural modification in InMnP epilayers, prepared by Mn ion implantation and pulsed laser annealing, are investigated in the following work. All samples exhibit clear hysteresis loops and strong spin polarization at the Fermi level. The degree of magnetization, the Curie temperature and the spin polarization depend on the Mn concentration. The bright-field transmission electron micrographs show that InP samples become almost amorphous after Mn implantation but recrystallize after pulsed laser annealing. We did not observe an insulator-metal transition in InMnP up to a Mn concentration of 5 at./%. Instead all InMnP samples show insulating characteristics up to the lowest measured temperature. Magneotresistance results obtained at low temperatures support the hopping conduction mechanism in InMnP. We find that the Mn impurity band remains detached from the valence band in InMnP up to 5 at./% Mn doping. Our findings indicate that the local environment of Mn ions in InP is similar to GaMnAs, GaMnP and InMnAs, however, the electrical properties of these Mn implanted III-V compounds are different. This is one of the consequences of the different Mn binding energy in these compounds.



قيم البحث

اقرأ أيضاً

Single crystals of CrSbSe$_3$, a structurally pseudo-one-dimensional ferromagnetic semiconductor, were grown using a high-temperature solution growth technique and were characterized by x-ray diffraction, anisotropic, temperature- and field-dependent magnetization, temperature-dependent resistivity and optical absorption measurements. A band gap of 0.7 eV was determined from both resistivity and optical measurements. At high temperatures, CrSbSe$_3$ is paramagnetic and isotropic with a Curie-Weiss temperature of $sim$145 K and an effective moment of $sim$4.1 $mu_B$/Cr. A ferromagnetic transition occurs at $T_c$ = 71 K. The $a$-axis, perpendicular to the chains in the structure, is the magnetic easy axis, while the chain axis direction, along $b$, is the hard axis. Magnetic isotherms measured around $T_c$ do not follow the behavior predicted by simple mean field critical exponents for a second order phase transition. A tentative set of critical exponents is estimated based on a modified Arrott plot analysis, giving $betasim$0.25, $gammasim$1.38 and $deltasim$6.6.
115 - E. Durgun , S. Tongay , 2005
Unusual physical properties of single-wall carbon nanotubes have started a search for similar tubular structures of other elements. In this paper, we present a theoretical analysis of single-wall nanotubes of silicon and group III-V compounds. Starti ng from precursor graphene-like structures we investigated the stability, energetics and electronic structure of zigzag and armchair tubes using first-principles pseudopotential plane wave method and finite temperature ab-initio molecular dynamics calculations. We showed that (n,0) zigzag and (n,n) armchair nanotubes of silicon having n > 6 are stable but those with n < 6 can be stabilized by internal or external adsorption of transition metal elements. Some of these tubes have magnetic ground state leading to spintronic properties. We also examined the stability of nanotubes under radial and axial deformation. Owing to the weakness of radial restoring force, stable Si nanotubes are radially soft. Undeformed zigzag nanotubes are found to be metallic for 6 < n < 11 due to curvature effect; but a gap starts to open for n > 12. Furthermore, we identified stable tubular structures formed by stacking of Si polygons. We found AlP, GaAs, and GaN (8,0) single-wall nanotubes stable and semiconducting. Our results are compared with those of single-wall carbon nanotubes.
The attainability of modification of the apparent magnetic anisotropy in (III,Mn)V ferromagnetic semiconductors is probed by means of the finite-elements-based modelling. The most representative case of (Ga,Mn)As and its in-plane uniaxial anisotropy is investigated. The hysteresis loops of the continuous films of a ferromagnetic semiconductor as well as films structured with the elliptic antidots are modelled for various eccentricity, orientation, and separation of the anti dots. The effect of anti-dots on the magnetic anisotropy is confirmed but overall is found to be very weak. The subsequent modelling for (Ga,Mn)As film with the elliptic dots comprising of metallic NiFe shows much stronger effect, revealing switching of the magnetic moment in the ferromagnetic semiconductor governed by the switching behavior of the metallic inclusions.
We have studied the electronic structure of the diluted magnetic semiconductor Ga$_{1-x}$Mn$_{x}$N ($x$ = 0.0, 0.02 and 0.042) grown on Sn-doped $n$-type GaN using photoemission and soft x-ray absorption spectroscopy. Mn $L$-edge x-ray absorption hav e indicated that the Mn ions are in the tetrahedral crystal field and that their valence is divalent. Upon Mn doping into GaN, new state were found to form within the band gap of GaN, and the Fermi level was shifted downward. Satellite structures in the Mn 2$p$ core level and the Mn 3$d$ partial density of states were analyzed using configuration-interaction calculation on a MnN$_{4}$ cluster model. The deduced electronic structure parameters reveal that the $p$-$d$ exchange coupling in Ga$_{1-x}$Mn$_{x}$N is stronger than that in Ga$_{1-x}$Mn$_{x}$As.
Through time-resolved two-color magneto-optical Kerr spectroscopy we have demonstrated that photogenerated transient carriers decrease the coercivity of ferromagnetic InMnAs at low temperatures. This transient ``softening persists only during the car rier lifetime ($sim$ 2 ps) and returns to its original value as soon as the carriers recombine to disappear. We discuss the origin of this unusual phenomenon in terms of carrier-enhanced ferromagnetic exchange interactions between Mn ions and propose an entirely nonthermal scheme for magnetization reversal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا