ﻻ يوجد ملخص باللغة العربية
In this paper we extend earlier work on groups acting on Gaussian graphical models to Gaussian Bayesian networks and more general Gaussian models defined by chain graphs. We discuss the maximal group which leaves a given model invariant and provide basic statistical applications of this result. This includes equivariant estimation, maximal invariants and robustness. The computation of the group requires finding the essential graph. However, by applying Studenys theory of imsets we show that computations for DAGs can be performed efficiently without building the essential graph. In our proof we derive simple necessary and sufficient conditions on vanishing sub-minors of the concentration matrix in the model.
We study a problem of estimation of smooth functionals of parameter $theta $ of Gaussian shift model $$ X=theta +xi, theta in E, $$ where $E$ is a separable Banach space and $X$ is an observation of unknown vector $theta$ in Gaussian noise $xi$ with
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consis
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which corres
Let $X^{(n)}$ be an observation sampled from a distribution $P_{theta}^{(n)}$ with an unknown parameter $theta,$ $theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation