ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency under sampling of exponential random graph models

449   0   0.0 ( 0 )
 نشر من قبل Cosma Rohilla Shalizi
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGMs expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.



قيم البحث

اقرأ أيضاً

113 - Pourab Roy , Jason P. Fine , 2019
In prevalent cohort studies where subjects are recruited at a cross-section, the time to an event may be subject to length-biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum . In the regression setting, it has been shown that the accelerated failure time model for the underlying event time is invariant under these observed data set-ups and can be fitted using standard methodology for accelerated failure time model estimation, ignoring the length-bias. However, the efficiency of these estimators is unclear, owing to the fact that the observed covariate distribution, which is also length-biased, may contain information about the regression parameter in the accelerated life model. We demonstrate that if the true covariate distribution is completely unspecified, then the naive estimator based on the conditional likelihood given the covariates is fully efficient.
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variab les--that is, under true implementation of the methodology. A key assumption made is that all variables are factors. Although this assumes that the feature space has finite cardinality, in practice the space can be a extremely large--indeed, current computational procedures do not properly deal with this setting. An indirect consequence of this work is the introduction of new computational methodology for dealing with factors with unlimited number of labels.
143 - Carter T. Butts 2017
Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (exponential family r andom graph models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a family that has been the subject of considerable research. We also show how the method can be applied to a variant of the biased net models, which are not exponentially parameterized.
We introduce and study a local linear nonparametric regression estimator for censorship model. The main goal of this paper is, to establish the uniform almost sure consistency result with rate over a compact set for the new estimate. To support our t heoretical result, a simulation study has been done to make comparison with the classical regression estimator.
In this paper we extend earlier work on groups acting on Gaussian graphical models to Gaussian Bayesian networks and more general Gaussian models defined by chain graphs. We discuss the maximal group which leaves a given model invariant and provide b asic statistical applications of this result. This includes equivariant estimation, maximal invariants and robustness. The computation of the group requires finding the essential graph. However, by applying Studenys theory of imsets we show that computations for DAGs can be performed efficiently without building the essential graph. In our proof we derive simple necessary and sufficient conditions on vanishing sub-minors of the concentration matrix in the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا