ﻻ يوجد ملخص باللغة العربية
We introduce a semi-classical limit for many-body localization in the absence of global symmetries. Microscopically, this limit is realized by disordered Floquet circuits composed of Clifford gates. In $d=1$, the resulting dynamics are always many-body localized with a complete set of strictly local integrals of motion. In $dgeq 2$, the system realizes both localized and delocalized phases separated by a continuous transition in which ergodic puddles percolate. We argue that the phases are stable to deformations away from the semi-classical limit and estimate the resulting phase boundary. The Clifford circuit model is a distinct tractable limit from that of free fermions and suggests bounds on the critical exponents for the generic transition.
We investigate a many-body localization transition based on a Boltzmann transport theory. Introducing weak localization corrections into a Boltzmann equation, Hershfield and Ambegaokar re-derived the Wolfle-Vollhardt self-consistent equation for the
We discuss the problem of localization in two dimensional electron systems in the quantum Hall (single Landau level) regime. After briefly summarizing the well-studied problem of Anderson localization in the non-interacting case, we concentrate on th
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding
Characterizing the many-body localization (MBL) transition in strongly disordered and interacting quantum systems is an important issue in the field of condensed matter physics. We study the single particle Greens functions for a disordered interacti
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for incr