ﻻ يوجد ملخص باللغة العربية
Theoretical galaxy formation models are an established and powerful tool for interpreting the astrophysical significance of observational data, particularly galaxy surveys. Such models have been utilised with great success by optical surveys such as 2dFGRS and SDSS, but their application to radio surveys of cold gas in galaxies has been limited. In this chapter we describe recent developments in the modelling of the cold gas properties in the models, and how these developments are essential if they are to be applied to cold gas surveys of the kind that will be carried out with the SKA. By linking explicitly a galaxys star formation rate to the abundance of molecular hydrogen in the galaxy rather than cold gas abundance, as was assumed previously, the latest models reproduce naturally many of the global atomic and molecular hydrogen properties of observed galaxies. We review some of the key results of the latest models and highlight areas where further developments are necessary. We discuss also how model predictions can be most accurately compared with observational data, what challenges we expect when creating synthetic galaxy surveys in the SKA era, and how the SKA can be used to test models of dark matter.
The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at th
Theoretical uncertainties on non-linear scales are among the main obstacles to exploit the sensitivity of forthcoming galaxy and hydrogen surveys like Euclid or the Square Kilometre Array (SKA). Here, we devise a new method to model the theoretical e
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation,
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom