ﻻ يوجد ملخص باللغة العربية
Gravitational waveforms which describe the inspiral, merger and ringdown of coalescing binaries are usually constructed by synthesising information from perturbative descriptions, in particular post-Newtonian theory and black-hole perturbation theory, with numerical solutions of the full Einstein equations. In this paper we discuss the glueing of numerical and post-Newtonian waveforms to produce hybrid waveforms which include subdominant spherical harmonics (higher order modes), and focus in particular on the process of consistently aligning the waveforms, which requires a comparison of both descriptions and a discussion of their imprecisions. We restrict to the non-precessing case, and illustrate the process using numerical waveforms of up to mass ratio $q=18$ produced with the BAM code, and publicly available waveforms from the SXS catalogue. The results also suggest new ways of analysing finite radius errors in numerical simulations.
Numerical simulations of 15 orbits of an equal-mass binary black hole system are presented. Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5 cycles before merger, are compared with those from quasi-cir
We estimate the probability of detecting a gravitational wave signal from coalescing compact binaries in simulated data from a ground-based interferometer detector of gravitational radiation using Bayesian model selection. The simulated waveform of t
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 a
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave si
In this work we present an extension of the time domain phenomenological model IMRPhenomT for gravitational wave signals from binary black hole coalescences to include subdominant harmonics, specifically the $(l=2, m=pm 1)$, $(l=3, m=pm 3)$, $(l=4, m