ﻻ يوجد ملخص باللغة العربية
Numerical simulations of 15 orbits of an equal-mass binary black hole system are presented. Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5 cycles before merger, are compared with those from quasi-circular zero-spin post-Newtonian (PN) formulae. The cumulative phase uncertainty of these comparisons is about 0.05 radians, dominated by effects arising from the small residual spins of the black holes and the small residual orbital eccentricity in the simulations. Matching numerical results to PN waveforms early in the run yields excellent agreement (within 0.05 radians) over the first $sim 15$ cycles, thus validating the numerical simulation and establishing a regime where PN theory is accurate. In the last 15 cycles to merger, however, {em generic} time-domain Taylor approximants build up phase differences of several radians. But, apparently by coincidence, one specific post-Newtonian approximant, TaylorT4 at 3.5PN order, agrees much better with the numerical simulations, with accumulated phase differences of less than 0.05 radians over the 30-cycle waveform. Gravitational-wave amplitude comparisons are also done between numerical simulations and post-Newtonian, and the agreement depends on the post-Newtonian order of the amplitude expansion: the amplitude difference is about 6--7% for zeroth order and becomes smaller for increasing order. A newly derived 3.0PN amplitude correction improves agreement significantly ($<1%$ amplitude difference throughout most of the run, increasing to 4% near merger) over the previously known 2.5PN amplitude terms.
We study the effectiveness of stationary-phase approximated post-Newtonian waveforms currently used by ground-based gravitational-wave detectors to search for the coalescence of binary black holes by comparing them to an accurate waveform obtained fr
Gravitational waveforms which describe the inspiral, merger and ringdown of coalescing binaries are usually constructed by synthesising information from perturbative descriptions, in particular post-Newtonian theory and black-hole perturbation theory
We present analytic computations of gauge invariant quantities for a point mass in a circular orbit around a Schwarzschild black hole, giving results up to 15.5 post-Newtonian order in this paper and up to 21.5 post-Newtonian order in an online repos
We present an analytic computation of Detweilers redshift invariant for a point mass in a circular orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no assumptions on the magnitude of the spin of the black hol
The recent detection of gravitational waves and electromagnetic counterparts emitted during and after the collision of two neutron stars marks a breakthrough in the field of multi-messenger astronomy. Numerical relativity simulations are the only too