ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon spin rotation and neutron scattering study of the non-centrosymmetric tetragonal compound CeAuAl3

100   0   0.0 ( 0 )
 نشر من قبل Devashibhai Adroja
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the non-centrosymmetric tetragonal heavy-fermion compound CeAuAl3 using muon spin rotation (muSR), neutron diffraction (ND) and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with a possibility of another magnetic transition near 0.18 K. The heat capacity shows a sharp lambda-type anomaly at 1.1 K in zero-filed, which broadens and moves to higher temperature in applied magnetic field. Our zero-field muSR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further the ND study reveals an incommensurate magnetic ordering with a magnetic propagation vector k = (0, 0, 0.52) and a spiral structure of Ce moments coupled ferromagnetically within the ab-plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 meV and 24.6 meV in the paramagnetic phase of CeAuAl3 which can be explained on the basis of the CEF theory. Furthermore, low energy quasi-elastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuation below 30 K. We have estimated a Kondo temperature of TK=3.5 K from the quasi-elastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuAl3. The CEF parameters, energy level scheme and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuAl3.



قيم البحث

اقرأ أيضاً

The magnetic states of the non-centrosymmetric, pressure induced superconductor CeCoGe3 have been studied with magnetic susceptibility, muon spin relaxation(muSR), single crystal neutron diffraction and inelastic neutron scattering (INS). CeCoGe3 exh ibits three magnetic phase transitions at T_N1 = 21 K, T_N2 = 12 K and T_N3 = 8 K. The presence of long range magnetic order below T_N1 is revealed by the observation of oscillations of the asymmetry in the muSR spectra between 13 K and 20 K and a sharp increase in the muon depolarization rate. Single crystal neutron diffraction measurements reveal magnetic Bragg peaks consistent with propagation vectors of k = 2/3 between T_N1 and T_N2, k = 5/8between T_N2 and T_N3 and k = 1/2 below T_N3. An increase in intensity of the (1 1 0) reflection between T_N1 and T_N3 also indicates a ferromagnetic component in these phases. These measurements are consistent with an equal moment, two-up, two-down magnetic structure below T_N3, with a magnetic moment of 0.405(5) mu_B/Ce. Above T_N2, the results are consistent with an equal moment, two-up, one-down structure with a moment of 0.360(6) mu_B/Ce. INS studies reveal two crystal-field (CEF) excitations at 19 and 27 meV. From an analysis with a CEF model, the wave-functions of the J = 5/2 multiplet are evaluated along with a prediction for the magnitude and direction of the ground state magnetic moment. Our model correctly predicts that the moments order along the c axis but the observed magnetic moment of 0.405(5) mu_B is reduced compared to the predicted moment of 1.01 mu_B. This is ascribed to hybridization between the localized Ce^3+ f-electrons and the conduction band. This suggests that CeCoGe3 has a degree of hybridization between that of CeRhGe3 and the non-centrosymmetric superconductor CeRhSi3.
The magnetic ground state of double perovskite Sr2DyRuO6 has been investigated using muon spin rotation and relaxation (muSR), neutron powder diffraction (NPD) and inelastic neutron scattering (INS), in addition to heat capacity and magnetic suscepti bility (ac and dc) measurements. A clear signature of a long-range ordered magnetic ground state has been observed in the heat capacity data, which exhibit two sharp anomalies at 39.5 and 36 K found as well in the magnetic data. Further confirmation of long-range magnetic ordering comes from a sharp drop in the muon initial asymmetry and a peak in the relaxation rate at 40 K, along with a weak anomaly near 36 K. Based on temperature dependent NPD, the low temperature magnetic structure contains two interpenetrating lattices of Dy and Ru5, forming an antiferromagnetic ground state below 39.5 K with magnetic propagation vector k = (0,0,0). The magnetic moments of Dy and Ru at 3.5 K are pointing along the crystallographic b-axis with values of muDy = 4.92(10) muB and muRu = 1.94(7) muB, respectively. The temperature dependence of the Ru moments follows a mean field type behaviour, while that of the Dy moments exhibits a deviation indicating that the primary magnetic ordering is induced by the order of the 4d electrons of Ru rather than that of its proper 4f Dy electrons. The origin of the second anomaly observed in the heat capacity data at 36.5 K must be connected to a very small spin reorientation as the NPD studies do not reveal any clear change in the observed magnetic Bragg peaks positions or intensities between these two transitions. INS measurements reveal the presence of crystal field excitations (CEF) in the paramagnetic state with overall CEF splitting of 73.8 meV, in agreement with the point change model calculations.
We report a study of the triangular lattice Heisenberg magnet NiGa2S4 by the positive muon spin rotation and relaxation technique. We unravel three temperature regimes: (i) below T_c = 9.2(2) K a spontaneous static magnetic field at the muon site is observed and the spin dynamics is appreciable: the time scale of the modes we probe is ~ 7 ns; (ii) an unconventional stretched exponential relaxation function is found for T_c < T < T_{cross} where T_{cross} = 12.6 K, which is a signature of a multichannel relaxation for this temperature range; (iii) above T_{cross}, the relaxation is exponential as expected for a conventional compound. The transition at T_c is of the continuous type. It occurs at a temperature slightly smaller than the temperature at which the specific heat displays a maximum at low temperature. This is reminiscent of the behavior expected for the Berezinskii-Kosterlitz-Thouless transition. We argue that these results reflect the presence of topological defects above T_c.
We present a comprehensive study of magnon excitations in the tetragonal easy-plane anti-ferromagnet Bi$_2$CuO$_4$ using inelastic neutron scattering and spin wave analyses. The nature of low energy magnons, and hence the anisotropy in this material, has been controversial. We show unambiguously that the low energy magnon spectrum consists of a gapped and a gapless mode, which we attribute to out-of-plane and in-plane spin fluctuations, respectively. We modelled the observed magnon spectrum using linear spin wave analysis of a minimal anisotropic spin model motivated by the lattice symmetry. By studying the magnetic field dependence of the (1, 0, 0) Bragg peak intensity and the in-plane magnon intensity, we observed a spin-flop transition in the $ab$ plane at $sim0.4$~T which directly indicates the existence of a small in-plane anisotropy that is classically forbidden. It is only by taking into account magnon zero-point fluctuations beyond the linear spin wave approximation, we could explain this in-plane anisotropy and its magnitude, the latter of which is deduced from critical field of the spin-flop transition. The microscopic origins of the observed anisotropic interactions are also discussed. We found that our data is inconsistent with a large Dzyaloshinskii-Moriya interaction, which suggests a potential departure of Bi$_2$CuO$_4$ from the conventional theories of magnetic anisotropy for other cuprates.
228 - Tetsuya Takimoto 2008
We examine static spin susceptibilities $chi_{alphabeta}({bf q})$ of spin components $S_{alpha}$ and $S_{beta}$ in the non-centrosymmetric tetragonal system. These show anomalous momentum dependences like $chi_{xx}({bf q})-chi_{yy}({bf q})sim q_x^2-q _y^2$ and $chi_{xy}({bf q})+chi_{yx}({bf q})sim q_x q_y$, which vanish in centrosymmetric systems. The magnitudes of the anomalous spin susceptibilities are enhanced by the on-site Coulomb interaction, especially, around an ordering wave vector. The significant and anomalous momentum dependences of these susceptibilities are explained by a group theoretical analysis. As the direct probe of the anomalous spin susceptibility, we propose a polarized neutron scattering experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا