ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer $SL-WSe_2$

65   0   0.0 ( 0 )
 نشر من قبل Chendong Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding quasiparticle band structures of transition metal dichalcogenides (TMDs) is critical for technological advances of these materials for atomic layer electronics and photonics. Although theoretical calculations to date have shown qualitatively similar features, there exist subtle differences which can lead to important consequences in the device characteristics. For example, most calculations have shown that all single layer (SL) TMDs have direct band gaps, while some have shown that $SL-WSe_2$ have an indirect gap. Moreover, there are large variations in the reported quasiparticle gaps, corresponding to large variations in exciton binding energies. By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasiparticle electronic structures in TMDs, including the quasi-particle gaps, critical point energy locations and their origins in the Brillouin Zones (BZs). We show that $SL-WSe_2$ actually has an indirect quasi-particle gap with the conduction band minimum located at the Q point (instead of K), albeit the two states are nearly degenerate. Its implications on optical properties are discussed. We have further observed rich quasi-particle electronic structures of TMDs as a function of atomic structures and spin-orbital couplings.

قيم البحث

اقرأ أيضاً

Two-dimensional transition-metal dichalcogendes $MX_2$ (es. MoS$_2$, WS$_2$, MoSe$_2$, ldots) are among the most promising materials for bandgap engineering. Widely studied in these compounds, by means of ab-initio techniques, is the possibility of t uning the direct-indirect gap character by means of in-plane strain. In such kind of calculations however the lattice degrees of freedom are assumed to be classical and frozen. In this paper we investigate in details the dependence of the bandgap character (direct vs. indirect) on the out-of-plane distance $h$ between the two chalcogen planes in each $MX_2$ unit. Using DFT calculations, we show that the bandgap character is indeed highly sensitive on the parameter $h$, in monolayer as well as in bilayer and bulk compounds, permitting for instance the switching from indirect to direct gap and from indirect to direct gap in monolayer systems. This scenario is furthermore analyzed in the presence of quantum lattice fluctuation induced by the zero-point motion. On the basis of a quantum analysis, we argue that the direct-indirect bandgap transitions induced by the out-of-plane strain as well by the in-plane strain can be regarded more as continuous crossovers rather than as real sharp transitions. The consequences on the physical observables are discussed.
We develop a microscopic and atomistic theory of electron spin-based qubits in gated quantum dots in a single layer of transition metal dichalcogenides. The qubits are identified with two degenerate locked spin and valley states in a gated quantum do t. The two-qubit states are accurately described using a multi-million atom tight-binding model solved in wavevector space. The spin-valley locking and strong spin-orbit coupling result in two degenerate states, one of the qubit states being spin-down located at the $+K$ valley of the Brillouin zone, and the other state located at the $-K$ valley with spin up. We describe the qubit operations necessary to rotate the spin-valley qubit as a combination of the applied vertical electric field, enabling spin-orbit coupling in a single valley, with a lateral strongly localized valley-mixing gate.
Quantum conductance calculations on the mechanically deformed monolayers of MoS$_2$ and WS$_2$ were performed using the non-equlibrium Greens functions method combined with the Landauer-B{u}ttiker approach for ballistic transport together with the de nsity-functional based tight binding (DFTB) method. Tensile strain and compression causes significant changes in the electronic structure of TMD single layers and eventually the transition semiconductor-metal occurs for elongations as large as ~11% for the 2D-isotropic deformations in the hexagonal structure. This transition enhances the electron transport in otherwise semiconducting materials.
Materials with large magnetocrystalline anisotropy and strong electric field effects are highly needed to develop new types of memory devices based on electric field control of spin orientations. Instead of using modified transition metal films, we p ropose that certain monolayer transition metal dichalcogenides are the ideal candidate materials for this purpose. Using density functional calculations, we show that they exhibit not only a large magnetocrystalline anisotropy (MCA), but also colossal voltage modulation under external field. Notably, in some materials like CrSe_2 and FeSe_2, where spins show a strong preference for in-plane orientation, they can be switched to out-of-plane direction. This effect is attributed to the large band character alteration that the transition metal d-states undergo around the Fermi energy due to the electric field. We further demonstrate that strain can also greatly change MCA, and can help to improve the modulation efficiency while combined with an electric field.
We have obtained analytical expressions for the q-dependent static spin susceptibility of monolayer transition metal dichalcogenides, considering both the electron-doped and hole-doped cases. Our results are applied to calculate spin-related physical observables of monolayer MoS2, focusing especially on in-plane/out-of-plane anisotropies. We find that the hole-mediated RKKY exchange interaction for in-plane impurity-spin components decays with the power law $R^{-5/2}$ as a function of distance $R$, which deviates from the $R^{-2}$ power law normally exhibited by a two-dimensional Fermi liquid. In contrast, the out-of-plane spin response shows the familiar $R^{-2}$ long-range behavior. We also use the spin susceptibility to define a collective g-factor for hole-doped MoS2 systems and discuss its density-dependent anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا