ﻻ يوجد ملخص باللغة العربية
Species richness varies widely across the tree of life, and there is great interest in identifying ecological, geographic, and other factors that affect rates of species proliferation. Recent methods for explicitly modeling the relationships among character states, speciation rates, and extinction rates on phylogenetic trees- BiSSE, QuaSSE, GeoSSE, and related models - have been widely used to test hypotheses about character state-dependent diversification rates. Here, we document the disconcerting ease with which neutral traits are inferred to have statistically significant associations with speciation rate. We first demonstrate this unfortunate effect for a known model assumption violation: shifts in speciation rate associated with a character not included in the model. We further show that for many empirical phylogenies, characters simulated in the absence of state-dependent diversification exhibit an even higher Type I error rate, indicating that the method is susceptible to additional, unknown model inadequacies. For traits that evolve slowly, the root cause appears to be a statistical framework that does not require replicated shifts in character state and diversification. However, spurious associations between character state and speciation rate arise even for traits that lack phylogenetic signal, suggesting that phylogenetic pseudoreplication alone cannot fully explain the problem. The surprising severity of this phenomenon suggests that many trait-diversification relationships reported in the literature may not be real. More generally, we highlight the need for diagnosing and understanding the consequences of model inadequacy in phylogenetic comparative methods.
When a population inhabits an inhomogeneous environment, the fitness value of traits can vary with the position in the environment. Gene flow caused by random mating can nevertheless prevent that a sexually reproducing population splits into differen
Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and opened the door for numerous breakthroughs in biology, medicine and other scientific fields. And yet, the ultimate promise of this area of
A tumor can be thought of as an ecosystem, which critically means that we cannot just consider it as a collection of mutated cells but more as a complex system of many interacting cellular and microenvironmental elements. At its simplest, a growing t
A square lattice is introduced into the Penna model for biological aging in order to study the evolution of diploid sexual populations under certain conditions when one single locus in the individuals genome is considered as identifier of species. Th
We present an efficient and flexible method for computing likelihoods of phenotypic traits on a phylogeny. The method does not resort to Monte-Carlo computation but instead blends Felsensteins discrete character pruning algorithm with methods for num