ﻻ يوجد ملخص باللغة العربية
We introduce mod 3 triple Milnor invariants and triple cubic residue symbols for certain primes of the Eisenstein number field $mathbb{Q}(sqrt{-3})$, following the analogies between knots and primes. Our triple symbol generalizes both the cubic residue symbol and R{e}deis triple symbol, and describes the decomposition law of a prime in a mod 3 Heisenberg extension of degree 27 over $mathbb{Q}(sqrt{-3})$ with restricted ramification, which we construct concretely in the form similar to R{e}deis dihedral extension over $mathbb{Q}$. We also give a cohomological interpretation of our symbols by triple Massey products in Galois cohomology.
The use of quadratic residues to construct matrices with specific determinant values is a familiar problem with connections to many areas of mathematics and statistics. Our research has focused on using cubic residues to construct matrices with interesting and predictable determinants.
The subject of this work is a three-dimensional topological field theory with a non-semisimple group of gauge symmetry with observables consisting in the holonomies of connections around three closed loops. The connections are a linear combination of
Every link in the 3-sphere has a projection to the plane where the only singularities are pairwise transverse triple points. The associated diagram, with height information at each triple point, is a triple-crossing diagram of the link. We give a set
Given a null-homologous knot $K$ in a rational homology 3-sphere $M$, and the standard infinite cyclic covering $tilde{X}$ of $(M,K)$, we define an invariant of triples of curves in $tilde{X}$, by means of equivariant triple intersections of surfaces
In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order $v$, where $v=3^k$, and $3$-rank $v-k$. We develop an approach to