ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Dynamics of Kerr Optical Frequency Combs below and above Threshold: Spontaneous Four-Wave-Mixing, Entanglement and Squeezed States of Light

192   0   0.0 ( 0 )
 نشر من قبل Yanne Chembo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yanne K. Chembo




اسأل ChatGPT حول البحث

In this article, we use quantum Langevin equations to provide a theoretical understanding of the non-classical behavior of Kerr optical frequency combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various sidemodes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double peaked depending on the parameters of the system. We also calculate as well the overall spontaneous noise power per sidemode, and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatio-temporal patterns, the side-modes that are symmetrical relatively to the pumped mode in the frequency domain display quantum correlations that can lead to squeezed states of light. We also explicitly determine the phase quadratures leading to photon entanglement, and analytically calculate their quantum noise spectra. We finally discuss the relevance of Kerr combs for quantum information systems at optical telecommunication wavelengths, below and above threshold.



قيم البحث

اقرأ أيضاً

Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime ntally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
168 - Z. Vernon , J.E. Sipe 2015
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
We observed electromagnetically-induced-transparency-based four-wave mixing (FWM) in the pulsed regime at low light levels. The FWM conversion efficiency of 3.8(9)% was observed in a four-level system of cold 87Rb atoms using a driving laser pulse wi th a peak intensity of approximately 80 {mu}W/cm^2, corresponding to an energy of approximately 60 photons per atomic cross section. Comparison between the experimental data and the theoretical predictions proposed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)] showed good agreement. Additionally, a high conversion efficiency of 46(2)% was demonstrated when applying this scheme using a driving laser intensity of approximately 1.8 mW/cm^2. According to our theoretical predictions, this FWM scheme can achieve a conversion efficiency of nearly 100% when using a dense medium with an optical depth of 500.
Using four-wave mixing in a hot atomic vapor, we generate a pair of entangled twin beams in the microsecond pulsed regime near the D1 line of $^{85}$Rb, making it compatible with commonly used quantum memory techniques. The beams are generated in the bright and vacuum-squeezed regimes, requiring two separate methods of analysis, without and with local oscillators, respectively. We report a noise reduction of up to $3.8pm 0.2$ dB below the standard quantum limit in the pulsed regime and a level of entanglement that violates an Einstein--Podolsky--Rosen inequality.
Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا