ترغب بنشر مسار تعليمي؟ اضغط هنا

Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor

86   0   0.0 ( 0 )
 نشر من قبل Raphael Pooser
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.

قيم البحث

اقرأ أيضاً

Squeezed states of light have received renewed attention due to their applicability to quantum-enhanced sensing. To take full advantage of their reduced noise properties to enhance atomic-based sensors, it is necessary to generate narrowband near or on atomic resonance single-mode squeezed states of light. We have previously generated bright two-mode squeezed states of light, or twin beams, that can be tuned to resonance with the D1 line of $^{87}$Rb with a non-degenerate four-wave mixing (FWM) process in a double-lambda configuration in a $^{85}$Rb vapor cell. Here we report on the use of feedforward to transfer the amplitude quantum correlations present in the twin beams to a single beam for the generation of single-mode amplitude squeezed light. With this technique we obtain a single-mode squeezed state with a squeezing level of $-2.9pm0.1$ dB when it is tuned off-resonance and a level of $-2.0pm 0.1$ dB when it is tuned on resonance with the D1 $F=2$ to $F=2$ transition of $^{87}$Rb.
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime ntally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
We report the generation of a squeezed vacuum state of light whose noise ellipse rotates as a function of the detection frequency. The squeezed state is generated via a four-wave mixing process in a vapor of 85Rb. We observe that rotation varies with experimental parameters such as pump power and laser detunings. We use a theoretical model based on the Heisenberg-Langevin formalism to describe this effect. Our model can be used to investigate the parameter space and to tailor the ellipse rotation in order to obtain an optimum squeezing angle, for example, for coupling to an interferometer whose optimal noise quadrature varies with frequency.
Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient l ight-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically entangle two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot $^{85}$Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of $^{85}$Rb and $^{87}$Rb, we are able to operate the FWM in $^{85}$Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of $^{87}$Rb, one mode with the $F=2$ to $F=2$ transition and the other one with the $F=1$ to $F=1$ transition. For this configuration, we obtain an intensity difference squeezing level of $-3.5$ dB. Moreover, the intensity difference squeezing increases to $-5.4$ dB and $-5.0$ dB when only one of the modes of the squeezed state is resonant with the D1 $F=2$ to $F=2$ or $F=1$ to $F=1$ transition of $^{87}$Rb, respectively.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا