ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

110   0   0.0 ( 0 )
 نشر من قبل Carlos Meriles Prof
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.


قيم البحث

اقرأ أيضاً

102 - Jiwon Yun , Kiho Kim , 2019
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxatio n and achieve a polarity-tunable, fast nuclear polarization of degree higher than 85% at room temperature for remote 13C nuclear spins exhibiting hyperfine interaction strength with NV centers of the order of 600 kHz. We show with the aid of numerical simulation that the anisotropic hyperfine tensor components naturally provide a route to control spin mixing parameter so that highly efficient nuclear polarization is enabled through careful tuning of nuclear quantization axis by external magnetic field. We further discuss spin dynamics and wide applicability of this method to various target 13C nuclear spins around the NV center electron spin. The proposed control method demonstrates an efficient and versatile route to realize, for example, high-fidelity spin register initialization and quantum metrology using nuclear spin resources in solids.
Under ambient conditions, spin impurities in solid-state systems are found in thermally-mixed states and are optically dark, i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the e lectronic spin states are bright, i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a dressed-state, double-resonance scheme to transfer polarization from bright NV electronic spins to dark substitutional-Nitrogen (P1) electronic spins in diamond. This polarization-transfer mechanism could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.
Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromech anical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
We investigate the dynamic nuclear polarization from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins coupled to them in semiconductor nanostructures. We derive the time and position dependence of the induced nuclea r spin polarization and dipolar magnetic fields. In GaAs/AlGaAs parabolic quantum wells the nuclear spin polarization can be as high as 80% and the induced nuclear magnetic fields can approach a few gauss with an associated nuclear resonance shift of the order of kHz when the electronic system is 100% spin polarized. These fields and shifts can be tuned using small electric fields. We discuss the implications of such control for optical nuclear magnetic resonance experiments in low-dimensional semiconductor nanostructures.
Generating robust entanglement among solid-state spins is key for applications in quantum information processing and precision sensing. We show here a dissipative approach to generate such entanglement among the hyperfine coupled electron nuclear spi ns using the rapid optical decay of electronic excited states. The combined dark state interference effects of the optical and microwave driving fields in the presence of spontaneous emission from the short-lived excited state leads to a dissipative formation of an entangled steady state. We show that the dissipative entanglement is generated for any initial state conditions of the spins and is resilient to external field fluctuations. We analyze the scheme both for continuous and pulsed driving fields in the presence of realistic noise sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا