ﻻ يوجد ملخص باللغة العربية
We consider the critical behaviors and phase transitions of Gauss Bonnet-Born Infeld-AdS black holes (GB-BI-AdS) for $d=5,6$ and the extended phase space. We assume the cosmological constant, $Lambda$, the coupling coefficient $alpha$, and the BI parameter $beta$ to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find reentrant and triple point phase transitions (RPT-TP) and multiple reentrant phase transitions (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient $alpha$ in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for $d=6$. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third order of Lovelock gravity and in the grand canonical ensemble to find a Van der Waals behavior for $d=7$ and a reentrant phase transition for $d=8$ for specific values of potential $phi$ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of $beta to infty$, i.e charged-AdS black holes in the third order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter $beta$ in the grand canonical ensemble.
In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We an
In this paper, the overcharging problem and thermodynamics in the extended phase spaces of the five-dimensional spherically symmetric topological black holes are investigated by absorptions of scalar particles and fermions. The cosmological constant
In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius $r_{B}$ to include $Vequiv4pi r_{B}^{3}/3$ as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes
The $P$-$V$ phase transition and critical behavior in the extended phase space of asymptotic Anti-de Sitter (AdS) black holes have been widely investigated, in which four critical exponents around critical point are found to be consistent with values
Recently, the phase space of black holes in a spherical cavity of radius $r_{B}$ has been extended by introducing a thermodynamic volume $Vequiv4pi r_{B}^{3}/3$. In the extended phase space, we consider the thermodynamic geometry, which provides a po