ﻻ يوجد ملخص باللغة العربية
The Chiral Magnetic Effect (CME) is predicted for Au-Au collisions at RHIC. However many backgrounds can give signals that make the measurement hard to interpret. The STAR experiment has made measurements at different collisions energy ranging from $sqrt{s_{NN}}$=7.7 GeV to 62.4 GeV. In the analysis that is presented we show that the CME turns on with energy and is not present in central collisions where the induced magnetic is small.
The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impact
We study the collision energy dependence of (anti-)deuteron and (anti-)triton production in the most central Au+Au collisions at $sqrt{s_mathrm{NN}}=$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV, using the nucleon coalescence model. The needed phase-sp
The Multi-Phase Transport model, AMPT, and the Anomalous Viscous Fluid Dynamics model, AVFD, are used to assess a possible chiral-magnetically-driven charge separation ($Delta S$) recently measured with the ${R_{Psi_2}(Delta S)}$ correlator in Au+Au
The RHIC Beam Energy Scan focuses on mapping the QCD phase diagram and pinpointing the location of a possible critical end point. Bose-Einstein correlations and event-by-event fluctuations of conserved quantities, measured as a function of centrality
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $sqrt{s_text{NN}} = $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be we