ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantification of the Chiral Magnetic Effect in Au+Au collisions at $sqrt{s_{mathrm{NN}}}=200$ GeV

108   0   0.0 ( 0 )
 نشر من قبل Roy Lacey
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Multi-Phase Transport model, AMPT, and the Anomalous Viscous Fluid Dynamics model, AVFD, are used to assess a possible chiral-magnetically-driven charge separation ($Delta S$) recently measured with the ${R_{Psi_2}(Delta S)}$ correlator in Au+Au collisions at $sqrt{s_{mathrm{NN}}}=200$ GeV. The Comparison of the experimental and simulated ${R_{Psi_2}(Delta S)}$ distributions indicates that background-driven charge separation is insufficient to account for the measurements. The AVFD model calculations, which explicitly account for CME-driven anomalous transport in the presence of background, indicate a CME signal quantified by the $P$-odd Fourier dipole coefficient ${a_1}approx 0.5%$ in mid-central collisions. A similar evaluation for the $Deltagamma$ correlator suggests that only a small fraction of this signal ($f_{rm CME}=Deltagamma_{rm CME}/Deltagamma approx 25%$) is measurable with this correlator in the same collisions. The related prediction for signal detection in isobaric collisions of Ru+Ru and Zr+Zr are also presented.



قيم البحث

اقرأ أيضاً

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magneti c field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($Deltagamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here the first differential measurements of the correlator as a function of the pair invariant mass ($m_{rm inv}$) in 20-50% centrality Au+Au collisions at $sqrt{s_{_{rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $Deltagamma$ are observed. At large $m_{rm inv}$ where this background is significantly reduced, the $Deltagamma$ value is found to be also significantly smaller. An event shape engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{rm inv}$. A $v_{2}$-independent signal, possibly indicating a $m_{rm inv}$-integrated CME contribution, is extracted to be $Deltagamma_{rm signal}$ = (0.03 $pm$ 0.06 $pm$ 0.08) $times10^{-4}$, or $(2pm4pm5)%$ of the inclusive $Deltagamma(m_{rm inv}>0.4$ GeV/$c^2$)$=(1.58 pm 0.02 pm 0.02) times10^{-4}$. This presents an upper limit of $0.23times10^{-4}$, or $15%$ of the inclusive result at $95%$ confidence level.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $sqrt{s_{mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $pi^{pm }$, $K^{pm}$ and $p(bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 TeV. The results at $sqrt{s_{mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $mu_B$, which is of the order of 100 MeV,between $sqrt{s_{mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
158 - J. H. Chen 2009
We report preliminary results of hypertriton observation in heavy-ion collisions at RHIC. We have identified 157 +- 30 candidates in the current sample containing ~10^8 Au+Au events at sqrt{s_{NN}} = 200 GeV. The production rate of hypertriton is clo se to that of helium 3. No extra penalty factor is observed for hypertriton, in contrast to results observed at the AGS.
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا