ترغب بنشر مسار تعليمي؟ اضغط هنا

Belief revision in the propositional closure of a qualitative algebra

98   0   0.0 ( 0 )
 نشر من قبل Valmi Dufour-Lussier
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Belief revision is an operation that aims at modifying old be-liefs so that they become consistent with new ones. The issue of belief revision has been studied in various formalisms, in particular, in qualitative algebras (QAs) in which the result is a disjunction of belief bases that is not necessarily repre-sentable in a QA. This motivates the study of belief revision in formalisms extending QAs, namely, their propositional clo-sures: in such a closure, the result of belief revision belongs to the formalism. Moreover, this makes it possible to define a contraction operator thanks to the Harper identity. Belief revision in the propositional closure of QAs is studied, an al-gorithm for a family of revision operators is designed, and an open-source implementation is made freely available on the web.



قيم البحث

اقرأ أيضاً

We propose a variant of iterated belief revision designed for settings with limited computational resources, such as mobile autonomous robots. The proposed memory architecture---called the {em universal memory architecture} (UMA)---maintains an epist emic state in the form of a system of default rules similar to those studied by Pearl and by Goldszmidt and Pearl (systems $Z$ and $Z^+$). A duality between the category of UMA representations and the category of the corresponding model spaces, extending the Sageev-Roller duality between discrete poc sets and discrete median algebras provides a two-way dictionary from inference to geometry, leading to immense savings in computation, at a cost in the quality of representation that can be quantified in terms of topological invariants. Moreover, the same framework naturally enables comparisons between different model spaces, making it possible to analyze the deficiencies of one model space in comparison to others. This paper develops the formalism underlying UMA, analyzes the complexity of maintenance and inference operations in UMA, and presents some learning guarantees for different UMA-based learners. Finally, we present simulation results to illustrate the viability of the approach, and close with a discussion of the strengths, weaknesses, and potential development of UMA-based learners.
In this work, we introduce a new approach for the efficient solution of autonomous decision and planning problems, with a special focus on decision making under uncertainty and belief space planning (BSP) in high-dimensional state spaces. Usually, to solve the decision problem, we identify the optimal action, according to some objective function. We claim that we can sometimes generate and solve an analogous yet simplified decision problem, which can be solved more efficiently; a wise simplification method can lead to the same action selection, or one for which the maximal loss can be guaranteed. Furthermore, such simplification is separated from the state inference, and does not compromise its accuracy, as the selected action would finally be applied on the original state. First, we present the concept for general decision problems, and provide a theoretical framework for a coherent formulation of the approach. We then practically apply these ideas to BSP problems, which can be simplified by considering a sparse approximation of the initial (Gaussian) belief. The scalable belief sparsification algorithm we provide is able to yield solutions which are guaranteed to be consistent with the original problem. We demonstrate the benefits of the approach in the solution of a highly realistic active-SLAM problem, and manage to significantly reduce computation time, with practically no loss in the quality of solution. This work is conceptual and fundamental, and holds numerous possible extensions.
99 - Yisong Wang 2015
Distilling from a knowledge base only the part that is relevant to a subset of alphabet, which is recognized as forgetting, has attracted extensive interests in AI community. In standard propositional logic, a general algorithm of forgetting and its computation-oriented investigation in various fragments whose satisfiability are tractable are still lacking. The paper aims at filling the gap. After exploring some basic properties of forgetting in propositional logic, we present a resolution-based algorithm of forgetting for CNF fragment, and some complexity results about forgetting in Horn, renamable Horn, q-Horn, Krom, DNF and CNF fragments of propositional logic.
In a previous paper, an ACP-style process algebra was proposed in which propositions are used as the visible part of the state of processes and as state conditions under which processes may proceed. This process algebra, called ACPps, is built on cla ssical propositional logic. In this paper, we present a version of ACPps built on a paraconsistent propositional logic which is essentially the same as CLuNs. There are many systems that would have to deal with self-contradictory states if no special measures were taken. For a number of these systems, it is conceivable that accepting self-contradictory states and dealing with them in a way based on a paraconsistent logic is an alternative to taking special measures. The presented version of ACPps can be suited for the description and analysis of systems that deal with self-contradictory states in a way based on the above-mentioned paraconsistent logic.
93 - R. Booth , T. Meyer 2011
As partial justification of their framework for iterated belief revision Darwiche and Pearl convincingly argued against Boutiliers natural revision and provided a prototypical revision operator that fits into their scheme. We show that the Darwiche-P earl arguments lead naturally to the acceptance of a smaller class of operators which we refer to as admissible. Admissible revision ensures that the penultimate input is not ignored completely, thereby eliminating natural revision, but includes the Darwiche-Pearl operator, Nayaks lexicographic revision operator, and a newly introduced operator called restrained revision. We demonstrate that restrained revision is the most conservative of admissible revision operators, effecting as few changes as possible, while lexicographic revision is the least conservative, and point out that restrained revision can also be viewed as a composite operator, consisting of natural revision preceded by an application of a backwards revision operator previously studied by Papini. Finally, we propose the establishment of a principled approach for choosing an appropriate revision operator in different contexts and discuss future work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا