ﻻ يوجد ملخص باللغة العربية
We investigate in details the inertial dynamics of a uniform magnetization in the ferromagnetic resonance (FMR) context. Analytical predictions and numerical simulations of the complete equations within the Inertial Landau-Lifshitz-Gilbert (ILLG) model are presented. In addition to the usual precession resonance, the inertial model gives a second resonance peak associated to the nutation dynamics provided that the damping is not too large. The analytical resolution of the equations of motion yields both the precession and nutation angular frequencies. They are function of the inertial dynamics characteristic time $tau$, the dimensionless damping $alpha$ and the static magnetic field $H$. A scaling function with respect to $alphataugamma H$ is found for the nutation angular frequency, also valid for the precession angular frequency when $alphataugamma Hgg 1$. Beyond the direct measurement of the nutation resonance peak, we show that the inertial dynamics of the magnetization has measurable effects on both the width and the angular frequency of the precession resonance peak when varying the applied static field. These predictions could be used to experimentally identify the inertial dynamics of the magnetization proposed in the ILLG model.
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau-Lifshitz-Gilbert equation proposed by Brown, with the pos
We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under th
We consider the numerical approximation of the inertial Landau-Lifshitz-Gilbert (iLLG) equation, which describes the dynamics of the magnetization in ferromagnetic materials at subpicosecond time scales. We propose and analyze two fully discrete nume
We introduce a new approach to understand magnetization dynamics in ferromagnets based on the holographic realization of ferromagnets. A Landau-Lifshitz equation describing the magnetization dynamics is derived from a Yang-Mills equation in the dual
In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multi-domain antiferromagnetic (AFM) lattice at finite temperature, in order to investigate the domain wall (DW) motion, the core issue for AFM spintronics. The continuity