ترغب بنشر مسار تعليمي؟ اضغط هنا

Unidirectional light emission from low-index polymer microlasers

299   0   0.0 ( 0 )
 نشر من قبل Stefan Bittner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on experiments with deformed polymer microlasers that have a low refractive index and exhibit unidirectional light emission. We demonstrate that the highly directional emission is due to transport of light rays along the unstable manifold of the chaotic saddle in phase space. Experiments, ray-tracing simulations, and mode calculations show very good agreement.



قيم البحث

اقرأ أيضاً

We measured the far-field emission patterns in three dimensions of flat organic dye microlasers using a solid angle scanner. Polymer-based microcavities of ribbon shape (i.e., Fabry-Perot type) were investigated. Out of plane emission from the caviti es was observed, with significant differences for the two cases of resonators either fully supported by the substrate or sustained by a pedestal. In both cases, the emission diagrams are accounted for by a model combining diffraction at the cavity edges and reflections from the substrate.
The emission from open cavities with non-integrable features remains a challenging problem of practical as well as fundamental relevance. Square-shaped dielectric microcavities provide a favorable case study with generic implications for other polygo nal resonators. We report on a joint experimental and theoretical study of square-shaped organic microlasers exhibiting a far-field emission that is strongly concentrated in the directions parallel to the side walls of the cavity. A semiclassical model for the far-field distributions is developed that is in agreement with even fine features of the experimental findings. Comparison of the model calculations with the experimental data allows the precise identification of the lasing modes and their emission mechanisms, providing strong support for a physically intuitive ray-dynamical interpretation. Special attention is paid to the role of diffraction and the finite side length.
Single-photon emitters integrated into quantum optical circuits will enable new, miniaturized quantum optical devices. Here, we numerically investigate semiconductor quantum dots embedded to low refractive index contrast waveguides. We discuss a mode l to compute the coupling efficiency of the emitted light field to the fundamental propagation mode of the waveguide, and we optimize the waveguide dimensional parameters for maximum coupling efficiency. Further, we show that for a laterally cropped waveguide the interplay of Purcell-enhancement and optimized field profile can enhance the coupling efficiency by a factor of about two.
Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom of photons that offers a promising playground in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (i.e. clockwise or counter clockwise vortices). Here, we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on an effective spin-orbit coupling of photons in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
Nonlinear light sources are central to a myriad of applications, driving a quest for their miniaturisation down to the nanoscale. In this quest, nonlinear metasurfaces hold a great promise, as they enhance nonlinear effects through their resonant pho tonic environment and high refractive index, such as in high-index dielectric metasurfaces. However, despite the sub-diffractive operation of dielectric metasurfaces at the fundamental wave, this condition is not fulfilled for the nonlinearly generated harmonic waves, thereby all nonlinear metasurfaces to date emit multiple diffractive beams. Here, we demonstrate the enhanced single-beam second- and third-harmonic generation in a metasurface of crystalline transition-metal-dichalcogenide material, offering the highest refractive index. We show that the interplay between the resonances of the metasurface allows for tuning of the unidirectional second-harmonic radiation in forward or backward direction, not possible in any bulk nonlinear crystal. Our results open new opportunities for metasurface-based nonlinear light-sources, including nonlinear mirrors and entangled-photon generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا