ﻻ يوجد ملخص باللغة العربية
Nonlinear light sources are central to a myriad of applications, driving a quest for their miniaturisation down to the nanoscale. In this quest, nonlinear metasurfaces hold a great promise, as they enhance nonlinear effects through their resonant photonic environment and high refractive index, such as in high-index dielectric metasurfaces. However, despite the sub-diffractive operation of dielectric metasurfaces at the fundamental wave, this condition is not fulfilled for the nonlinearly generated harmonic waves, thereby all nonlinear metasurfaces to date emit multiple diffractive beams. Here, we demonstrate the enhanced single-beam second- and third-harmonic generation in a metasurface of crystalline transition-metal-dichalcogenide material, offering the highest refractive index. We show that the interplay between the resonances of the metasurface allows for tuning of the unidirectional second-harmonic radiation in forward or backward direction, not possible in any bulk nonlinear crystal. Our results open new opportunities for metasurface-based nonlinear light-sources, including nonlinear mirrors and entangled-photon generation.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct
Van der Waals epitaxy on the surface of two-dimensional (2D) layered crystals has gained significant research interest for the assembly of well-ordered nanostructures and fabrication of vertical heterostructures based on 2D crystals. Although van der
The interplay of symmetry and quenched disorder leads to some of the most fundamentally interesting and technologically important properties of correlated materials. It also poses the most vexing of theoretical challenges. Nowhere is this more appare
Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important o
We investigate proximity-induced superconductivity in monolayers of transition metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay