ﻻ يوجد ملخص باللغة العربية
We present thermodynamic studies of a new spin-1/2 antiferromagnet containing undistorted kagome lattices---barlowite Cu$_{4}$(OH)$_{6}$FBr. Magnetic susceptibility gives $theta_{CW}$ = $-$136 K, while long-range order does not happen until $T_{N}$ = 15 K with a weak ferromagnetic moment $mu$ $<$ 0.1$mu_{B}$/Cu. A 60 T magnetic field induces a moment less than 0.5$mu_{B}$/Cu at $T$ = 0.6 K. Specific-heat measurements have observed multiple phase transitions at $T ll$ $mid$$theta_{CW}$$mid$. The magnetic entropy of these transitions is merely 18% of $k_{B}$ln2 per Cu spin. These observations suggest that nontrivial spin textures are realized in barlowite with magnetic frustration. Comparing with the leading spin-liquid candidate herbertsmithite, the superior interkagome environment of barlowite sheds light on new spin-liquid compounds with minimum disorder. The robust perfect geometry of the kagome lattice makes charge doping promising.
We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tenso
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A des
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hostin
The spin-$frac{1}{2}$ kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu$_{3}$V$_{2}$O$_{8}$(OD)$_{2}$, a ful
Hexagonal antiferromagnets Cs$_2$Cu$_3$MF$_{12}$ (M = Zr, Hf and Sn) have uniform Kagome lattices of Cu$^{2+}$ with S = 1/2, whereas Rb$_2$Cu$_3$SnF$_{12}$ has a 2a by 2a enlarged cell as compared with the uniform Kagome lattice. The crystal data of