ﻻ يوجد ملخص باللغة العربية
We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.
Generally, a superconducting nanowire single-photon detector (SNSPD) is composed of wires with a typical width of ~100 nm. Recent studies have found that superconducting strips with a micrometer-scale width can also detect single photons. Compared wi
We characterize a near-infrared single-photon detector based on an InGaAs/InP avalanche photodiode and the self-differencing post-processing technique. It operates at gate rates of 200 MHz and higher. The compact, integrated design employs printed ci
The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained f
Heralding of single photon at 1550 nm from pump pulsed non degenerate spontaneous parametric downconversion is demonstrated. P(1) and P(2) of our source are 0.1871 and 2.4 x 10 ^-3 respectively. Triggering of our source is 2.16 x 10^5 trigger.s^-1. This source may be used in QKD system.
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo