ترغب بنشر مسار تعليمي؟ اضغط هنا

The Counter-kink Rotation of a Non-Hale Active Region

107   0   0.0 ( 0 )
 نشر من قبل Marcelo L\\'opez Fuentes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the long-term evolution of a bipolar non-Hale active region which was observed from October, 1995, to January, 1996. Along these four solar rotations the sunspots and subsequent flux concentrations, during the decay phase of the region, were observed to move in such a way that by December their orientation conformed to the Hale-Nicholson polarity law. The sigmoidal shape of the observed soft X-ray coronal loops allows us to determine the sense of the twist in the magnetic configuration. This sense is confirmed by extrapolating the observed photospheric magnetic field, using a linear force-free approach, and comparing the shape of computed field lines to the observed coronal loops. This sense of twist agrees with that of the dominant helicity in the solar hemisphere where the region lies, as well as with the evolution observed in the longitudinal magnetogram during the first rotation. At first sight the relative motions of the spots may be miss-interpreted as the rising of an $Omega$-loop deformed by a kink-instability, but we deduce from the sense of their relative displacements a handedness for the flux-tube axis (writhe) which is opposite to that of the twist in the coronal loops and, therefore, to what is expected for a kink-unstable flux-tube. After excluding the kink instability, we interpret our observations in terms of a magnetic flux-tube deformed by external motions while rising through the convective zone. We compare our results with those of other related studies and we discuss, in particular, whether the kink instability is relevant to explain the peculiar evolution of some active regions.



قيم البحث

اقرأ أيضاً

There is no list of bipolar active regions (ARs) with reverse polarity (anti-Hale regions), although statistical investigations of such ARs (bearing the imprint of deep subphotospheric processes) are important for understanding solar-cycle mechanisms . We studied 8606 ARs from 1 January 1989 to 31 December 2018 to detect anti-Hale regions and to compile a catalog. The Solar and Heliospheric Observatory (SOHO) and the Solar Dynamics Observatory (SDO) data, as well as the Debrecen Photoheliographic Data, the Mount Wilson Observatory catalog and drawings, and the USAF/NOAA Solar Region Summary were used. Complex, ambiguous cases related to anti-Hale region identification were analyzed. Two basic and four additional criteria to identify an AR as an anti-Hale region were formulated. The basic criteria assume that: i) dominating features of an AR have to form a bipole of reverse polarity with sunspots/pores of both polarities being present; ii) magnetic connections between the opposite polarities has to be observed. A catalog of anti-Hale regions (275 ARs) is compiled. The catalog contains: NOAA number, date of the greatest total area of sunspots, coordinates, and corrected sunspot area for this date. The tilt and the most complex achieved Mount Wilson magnetic class are also provided. The percentage of anti-Hale groups meeting the proposed criteria is ~3.0% from all studied ARs, which is close to early estimations by authors who had examined each AR individually: ~2.4% by Hale and Nicholson (Ap.J. 62, 270, 1925) and ~3.1% by Richardson (Ap.J. 107, 78, 1948). The enchancement of the anti-Hale percentage in later research might be related to: i) increasing sensitivity of instruments (considering smaller and smaller bipoles); ii) the ambiguities in the anti-Hale region identification.
The heliospheric magnetic field (HMF) is structured into large sectors of positive and negative polarity. The parts of the boundary between these sectors where the change in polarity matches that of the leading-to-following sunspot polarity in that s olar hemisphere, are called Hale Sector Boundaries (HSB). We investigate the flare occurrence rate near HSBs and the association between HSBs and active longitudes. Previous work determined the times HSBs were at solar central meridian, using the detection of the HMF sector boundary crossing at the Earth. In addition to this, we use a new approach which finds the HSB locations at all times by determining them from Potential Field Source Surface (PFSS) extrapolations of photospheric magnetograms. We use the RHESSI X-ray flare list for comparison to the HSB as it provides accurate flare locations over 14 years, from February 2002 to February 2016, covering both Cycles 23 and 24. For the active longitude positions we use previously published work based on sunspot observations. We find that the two methods of determining the HSB generally agree and that 41% (Cycle 23) and 47% (Cycle 24) of RHESSI flares occur within $30^circ$ of the PFSS determined-HSB. The behaviour of the HSBs varies over the two Cycles studied, and as expected they swap in hemisphere as the Cycles change. The HSBs and active longitudes do overlap but not consistently. They often move at different rates relative to each other (and the Carrington solar rotation rate) and these vary over each Cycle. The HSBs provide a useful additional activity indicator, particularly during periods when active longitudes are difficult to determine.
Axisymmetric magnetic activity on the Sun and Sun-like stars increases the frequencies of the modes of acoustic oscillation. However, it is unclear how a corotating patch of activity affects the oscillations, since such a perturbation is unsteady in the frame of the observer. In this paper we qualitatively describe the asteroseismic signature of a large active region in the power spectrum of the dipole and quadrupole p modes. In the corotating frame of the active region, the perturbations due to (differential) rotation and the active region completely lift the $(2ell + 1)$-fold azimuthal degeneracy of the frequency spectrum of modes with harmonic degree $ell$. In the frame of the observer, the unsteady nature of the perturbation leads to the appearance of $(2ell+1)^2$ peaks in the power spectrum of a multiplet. These peaks blend into each other to form asymmetric line profiles. In the limit of a small active region, we approximate the power spectrum of a multiplet in terms of $2times(2ell+1)$ peaks, whose amplitudes and frequencies depend on the latitude of the active region and the inclination angle of the stars rotation axis. In order to check the results and to explore the nonlinear regime, we also perform numerical simulations using the 3D time-domain pseudo-spectral linear pulsation code GLASS.
Small-scale magnetic field concentrations (magnetic elements) in the quiet Sun are believed to contribute to the energy budget of the upper layers of the Suns atmosphere, as they are observed to support a large number of MHD modes. In recent years, k ink waves in magnetic elements were observed at different heights in the solar atmosphere, from the photosphere to the corona. However, the propagation of these waves has not been fully evaluated. Our aim is to investigate the propagation of kink waves in small magnetic elements in the solar atmosphere. We analysed spectropolarimetric data of high-quality and long duration of a photospheric quiet Sun region observed near the disk center with the spectropolarimeter CRISP at the Swedish Solar Telescope (SST), and complemented by simultaneous and co-spatial broad-band chromospheric observations of the same region. Our findings reveal a clear upward propagation of kink waves with frequency above $~2.6$ mHz. Moreover, the signature of a non-linear propagation process is also observed. By comparing photospheric to chromospheric power spectra, no signature of an energy dissipation is found at least at the atmospheric heights at which the data analysed originate. This implies that most of the energy carried by the kink waves (within the frequency range under study $< 17$ mHz) flows to upper layers in the Suns atmosphere.
126 - Paola Testa 2010
We analyze coordinated Hinode XRT and EIS observations of a non-flaring active region to investigate the thermal properties of coronal plasma taking advantage of the complementary diagnostics provided by the two instruments. In particular we want to explore the presence of hot plasma in non-flaring regions. Independent temperature analyses from the XRT multi-filter dataset, and the EIS spectra, including the instrument entire wavelength range, provide a cross-check of the different temperature diagnostics techniques applicable to broad-band and spectral data respectively, and insights into cross-calibration of the two instruments. The emission measure distribution, EM(T), we derive from the two datasets have similar width and peak temperature, but show a systematic shift of the absolute values, the EIS EM(T) being smaller than XRT EM(T) by approximately a factor 2. We explore possible causes of this discrepancy, and we discuss the influence of the assumptions for the plasma element abundances. Specifically, we find that the disagreement between the results from the two instruments is significantly mitigated by assuming chemical composition closer to the solar photospheric composition rather than the often adopted coronal composition (Feldman 1992). We find that the data do not provide conclusive evidence on the high temperature (log T[K] >~ 6.5) tail of the plasma temperature distribution, however, suggesting its presence to a level in agreement with recent findings for other non-flaring regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا