ترغب بنشر مسار تعليمي؟ اضغط هنا

Constant Step Size Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling Distributions

225   0   0.0 ( 0 )
 نشر من قبل Francis Bach
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the least-squares regression problem and provide a detailed asymptotic analysis of the performance of averaged constant-step-size stochastic gradient descent (a.k.a. least-mean-squares). In the strongly-convex case, we provide an asymptotic expansion up to explicit exponentially decaying terms. Our analysis leads to new insights into stochastic approximation algorithms: (a) it gives a tighter bound on the allowed step-size; (b) the generalization error may be divided into a variance term which is decaying as O(1/n), independently of the step-size $gamma$, and a bias term that decays as O(1/$gamma$ 2 n 2); (c) when allowing non-uniform sampling, the choice of a good sampling density depends on whether the variance or bias terms dominate. In particular, when the variance term dominates, optimal sampling densities do not lead to much gain, while when the bias term dominates, we can choose larger step-sizes that leads to significant improvements.

قيم البحث

اقرأ أيضاً

166 - Guocheng Liao , Yu Su , Juba Ziani 2021
While users claim to be concerned about privacy, often they do little to protect their privacy in their online actions. One prominent explanation for this privacy paradox is that when an individual shares her data, it is not just her privacy that is compromised; the privacy of other individuals with correlated data is also compromised. This information leakage encourages oversharing of data and significantly impacts the incentives of individuals in online platforms. In this paper, we study the design of mechanisms for data acquisition in settings with information leakage and verifiable data. We design an incentive compatible mechanism that optimizes the worst-case trade-off between bias and variance of the estimation subject to a budget constraint, where the worst-case is over the unknown correlation between costs and data. Additionally, we characterize the structure of the optimal mechanism in closed form and study monotonicity and non-monotonicity properties of the marketplace.
Reducing the variance of the gradient estimator is known to improve the convergence rate of stochastic gradient-based optimization and sampling algorithms. One way of achieving variance reduction is to design importance sampling strategies. Recently, the problem of designing such schemes was formulated as an online learning problem with bandit feedback, and algorithms with sub-linear static regret were designed. In this work, we build on this framework and propose Avare, a simple and efficient algorithm for adaptive importance sampling for finite-sum optimization and sampling with decreasing step-sizes. Under standard technical conditions, we show that Avare achieves $mathcal{O}(T^{2/3})$ and $mathcal{O}(T^{5/6})$ dynamic regret for SGD and SGLD respectively when run with $mathcal{O}(1/t)$ step sizes. We achieve this dynamic regret bound by leveraging our knowledge of the dynamics defined by the algorithm, and combining ideas from online learning and variance-reduced stochastic optimization. We validate empirically the performance of our algorithm and identify settings in which it leads to significant improvements.
The classical bias-variance trade-off predicts that bias decreases and variance increase with model complexity, leading to a U-shaped risk curve. Recent work calls this into question for neural networks and other over-parameterized models, for which it is often observed that larger models generalize better. We provide a simple explanation for this by measuring the bias and variance of neural networks: while the bias is monotonically decreasing as in the classical theory, the variance is unimodal or bell-shaped: it increases then decreases with the width of the network. We vary the network architecture, loss function, and choice of dataset and confirm that variance unimodality occurs robustly for all models we considered. The risk curve is the sum of the bias and variance curves and displays different qualitative shapes depending on the relative scale of bias and variance, with the double descent curve observed in recent literature as a special case. We corroborate these empirical results with a theoretical analysis of two-layer linear networks with random first layer. Finally, evaluation on out-of-distribution data shows that most of the drop in accuracy comes from increased bias while variance increases by a relatively small amount. Moreover, we find that deeper models decrease bias and increase variance for both in-distribution and out-of-distribution data.
While deep reinforcement learning has achieved tremendous successes in various applications, most existing works only focus on maximizing the expected value of total return and thus ignore its inherent stochasticity. Such stochasticity is also known as the aleatoric uncertainty and is closely related to the notion of risk. In this work, we make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria. In particular, we focus on a variance-constrained policy optimization problem where the goal is to find a policy that maximizes the expected value of the long-run average reward, subject to a constraint that the long-run variance of the average reward is upper bounded by a threshold. Utilizing Lagrangian and Fenchel dualities, we transform the original problem into an unconstrained saddle-point policy optimization problem, and propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable. When both the value and policy functions are represented by multi-layer overparameterized neural networks, we prove that our actor-critic algorithm generates a sequence of policies that finds a globally optimal policy at a sublinear rate.
84 - Ou Wu , Weiyao Zhu , Yingjun Deng 2021
A common assumption in machine learning is that samples are independently and identically distributed (i.i.d). However, the contributions of different samples are not identical in training. Some samples are difficult to learn and some samples are noi sy. The unequal contributions of samples has a considerable effect on training performances. Studies focusing on unequal sample contributions (e.g., easy, hard, noisy) in learning usually refer to these contributions as robust machine learning (RML). Weighing and regularization are two common techniques in RML. Numerous learning algorithms have been proposed but the strategies for dealing with easy/hard/noisy samples differ or even contradict with different learning algorithms. For example, some strategies take the hard samples first, whereas some strategies take easy first. Conducting a clear comparison for existing RML algorithms in dealing with different samples is difficult due to lack of a unified theoretical framework for RML. This study attempts to construct a mathematical foundation for RML based on the bias-variance trade-off theory. A series of definitions and properties are presented and proved. Several classical learning algorithms are also explained and compared. Improvements of existing methods are obtained based on the comparison. A unified method that combines two classical learning strategies is proposed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا