ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisionally excited filaments in HST H$alpha$ and H$beta$ images of HH~1/2

416   0   0.0 ( 0 )
 نشر من قبل Antonio Castellanos Antonio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new H$alpha$ and H$beta$ images of the HH~1/2 system, and we find that the H$alpha$/H$beta$ ratio has high values in ridges along the leading edges of the HH~1 bow shock and of the brighter condensations of HH~2. These ridges have H$alpha$/H$beta=4to 6$, which is consistent with collisional excitation from the $n=1$ to the $n=3$ and 4 levels of hydrogen in a gas of temperatures $T=1.5to 10times 10^4$~K. This is therefore the first direct proof that the collisional excitation/ionization region of hydrogen right behind Herbig-Haro shock fronts is detected.



قيم البحث

اقرأ أيضاً

204 - Branimir Sesar 2012
We present template radial velocity curves of $ab$-type RR Lyrae stars constructed from high-precision measurements of ${rm Halpha}$, ${rm Hbeta}$, and ${rm Hgamma}$ lines. Amplitude correlations between the Balmer line velocity curves, Johnson $V$-b and, and SDSS $g$- and $r$-band light curves are also derived. Compared to previous methods, these templates and derived correlations reduce the uncertainty in measured systemic (center-of-mass) velocities of RR Lyrae stars by up to 15 {kms}, and will be of particular interest to wide-area spectroscopic surveys such as the Sloan Digital Sky Survey (SDSS) and LAMOST Experiment for Galactic Understanding and Exploration (LEGUE).
Symbiotic stars often exhibit broad wings around Balmer emission lines, whose origin is still controversial. We present the high resolution spectra of the S type symbiotic stars Z Andromedae and AG Draconis obtained with the ESPaDOnS and the 3.6 m Ca nada France Hawaii Telescope to investigate the broad wings around H$alpha$ and H$beta$. When H$alpha$ and H$beta$ lines are overplotted in the Doppler space, it is noted that H$alpha$ profiles are overall broader than H$beta$ in these two objects. Adopting a Monte Carlo approach, we consider the formation of broad wings of H$alpha$ and H$beta$ through Raman scattering of far UV radiation around Ly$beta$ and Ly$gamma$ and Thomson scattering by free electrons. Raman scattering wings are simulated by choosing an H I region with a neutral hydrogen column density $N_{HI}$ and a covering factor $CF$. For Thomson wings, the ionized scattering region is assumed to cover fully the Balmer emission nebula and is characterized by the electron temperature $T_e$ and the electron column density $N_e$. Thomson wings of H$alpha$ and H$beta$ have the same width that is proportional to $T_e^{1/2}$. However, Raman wings of H$alpha$ are overall three times wider than H$beta$ counterparts, which is attributed to different cross section for Ly$beta$ and Ly$gamma$. Normalized to have the same peak values and presented in the Doppler factor space. H$alpha$ wings of Z And and AG Dra are observed to be significantly wider than H$beta$ counterpart, favoring the Raman scattering origin of broad Balmer wings.
Rotational spectra in four new excited vibrational levels of the linear carbon chain radical C$_4$H radical were observed in the millimeter band between 69 and 364 GHz in a low pressure glow discharge, and two of these were observed in a supersonic m olecular beam between 19 and 38 GHz. All have rotational constants within 0.4% of the $^2Sigma^+$ ground vibrational state of C$_4$H and were assigned to new bending vibrational levels, two each with $^2Sigma$ and $^2Pi$ vibrational symmetry. The new levels are tentatively assigned to the $1 u_6$ and $1 u_5$ bending vibrational modes (both with $^2Pi$ symmetry), and the $1 u_6 + 1 u_7$ and $1 u_5 + 1 u_6$ combination levels ($^2Sigma$ symmetry) on the basis of the derived spectroscopic constants, relative intensities in our discharge source, and published laser spectroscopic and quantum calculations. Prior spectroscopic constants in the $1 u_7$ and $2 u_7$ levels were refined. Also presented are interferometric maps of the ground state and the $1 u_7$ level obtained with the SMA near 257 GHz which show that C$_4$H is present near the central star in IRC+10216. We found no evidence with the SMA for the new vibrationally excited levels of C$_4$H at a peak flux density averaged over a $3^{primeprime}$ synthesized beam of $ge 0.15$ Jy/beam in the 294-296 and 304-306 GHz range, but it is anticipated that rotational lines in the new levels might be observed in IRC+10216 when ALMA attains its full design capability.
Between 1996 and 2002, we have carried out a spectral monitoring program for the Seyfert galaxy NGC 5548. High quality spectra (S/N>50), covering the spectral range (4000-7500)AA were obtained with the 6 m and 1 m telescopes of SAO (Russia) and with the 2.1 m telescope GHO (Mexico). We found that both the flux in the lines and the continuum gradually decreased, reaching minimum values during May-June 2002. The mean, rms, and the averaged over years, observed and difference line profiles of H-alpha and H-beta reveal the double peaked structure at the radial velocity ~+-1000km/s. The relative intensity of these peaks changes with time. During 1996, the red peak was the brightest, while in 1998 - 2002, the blue peak became the brighter one. In 2000-2002 a distinct third peak appeared in the red wing of H-alpha and H-beta line profiles. The radial velocity of this feature decreased between 2000 and 2002 from ~+2500 km/s to ~+2000 km/s. The fluxes of the various parts of the line profiles are well correlated with each other and also with the continuum flux. Shape changes of the different parts of the broad line are not correlated with continuum variations and, apparently, are not related to reverberation effects. Changes of the integral Balmer decrement are, on average, anticorrelated with the continuum flux variations. This is probably due to an increasing role of collisional excitation as the ionizing flux decreases. Our results favor the formation of the broad Balmer lines in a turbulent accretion disc with large and moving optically thick inhomogeneities, capable of reprocessing the central source continuum.
We present an analysis of four epochs of H$alpha$ and [S II] $lambdalambda$ 6716/6731 HST images of HH 1. For determining proper motions we explore a new method based on analysis of spatially degraded images obtained convolving the images with wavele t functions of chosen widths. With this procedure we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities and spatial distribution of the line emission. We find that over the last two decades HH 1 shows a clear acceleration. Also, the H$alpha$ and [S II] intensities have first dropped, and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O III] $lambda$ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O III]/H$alpha$ ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا