ترغب بنشر مسار تعليمي؟ اضغط هنا

The Two-Colour EMCCD Instrument for the Danish 1.54m Telescope and SONG

44   0   0.0 ( 0 )
 نشر من قبل Jesper Skottfelt
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the implemented design of a two-colour instrument based on electron multiplying CCD (EMCCD) detectors. This instrument is currently installed at the Danish 1.54m telescope at ESOs La Silla Observatory in Chile, and will be available at the SONG (Stellar Observations Network Group) 1m telescope node at Tenerife and at other SONG nodes as well. We present the software system for controlling the two-colour instrument and calibrating the high frame-rate imaging data delivered by the EMCCD cameras. An analysis of the performance of the Two-Colour Instrument at the Danish telescope shows an improvement in spatial resolution of up to a factor of two when doing shift-and-add compared with conventional imaging, and that it is possible to do high-precision photometry of EMCCD data in crowded fields. The Danish telescope, which was commissioned in 1979, is limited by a triangular coma at spatial resolutions below 0.5 and better results will thus be achieved at the near diffraction limited optical system on the SONG telescopes, where spatial resolutions close to 0.2 have been achieved. Regular EMCCD operations have been running at the Danish telescope for several years and have produced a number of scientific discoveries, including microlensing detected exoplanets, the detection of previously unknown variable stars in dense globular clusters and the discovery of two rings around the small asteroid-like object (10199) Chariklo.

قيم البحث

اقرأ أيضاً

We present the strategies adopted in the relative and absolute calibration of two different data sets: U,B,V,I-band images collected with the Wide Field Imager (WFI) mosaic camera mounted on the 2.2m ESO/MPI Telescope and u,v,b,y Stroemgren images co llected with the 1.54m Danish Telescope (ESO, La Silla). In the case of the WFI camera we adopted two methods for the calibration, one for images collected before 2002, with the ESO filters U/38_ESO841 and B/99_ESO842, and a different one for data secured after 2002, with the filters U/50_ESO877 and B/123_ESO878. The positional and color effects turned out to be stronger for images collected with the old filters. The eight WFI chips of these images were corrected one by one, while in the case of images secured with the new filters, we corrected the entire mosaic in a single step. In the case of the Danish data set, we compared point-spread function (PSF) and aperture photometry for each frame, finding a trend in both the X and Y directions of the chip. The corrections resulted in a set of first and second order polynomials to be applied to the instrumental magnitudes of each individual frame as a function of the star position.
We present the preliminary design of Cerberus, a new scientific instrument for the alt-az, 80cm OARPAF telescope in the Ligurian mountains above Genoa, Italy. Cerberus will provide three focal stations at the Nasmyth focus, allowing: imaging and phot ometry with standard Johnson-Cousins UBVRI+Ha+Free filters, an on-axis guiding camera, and a tip-tilt lens for image stabilization up to 10Hz; long slit spectroscopy at R 5900 thanks to a LHIRES III spectrograph provided with a 1200l/mm grism; echelle spectroscopy at R 9300 using a FLECHAS spectrograph with optical fiber.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-c oupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zeldovich and kinetic Sunyaev-Zeldovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) is a high-contrast imager and integral field spectrograph that will enable the study of exoplanets and circumstellar disks at visible wavelengths. Ground-based high-contra st instrumentation has fundamentally limited performance at small working angles, even under optimistic assumptions for 30m-class telescopes. There is a strong scientific driver for better performance, particularly at visible wavelengths. Future flagship mission concepts aim to image Earth analogues with visible light flux ratios of more than 10^10. CGI is a critical intermediate step toward that goal, with a predicted 10^8-9 flux ratio capability in the visible. CGI achieves this through improvements over current ground and space systems in several areas: (i) Hardware: space-qualified (TRL9) deformable mirrors, detectors, and coronagraphs, (ii) Algorithms: wavefront sensing and control; post-processing of integral field spectrograph, polarimetric, and extended object data, and (iii) Validation of telescope and instrument models at high accuracy and precision. This white paper, submitted to the 2018 NAS Exoplanet Science Strategy call, describes the status of key CGI technologies and presents ways in which performance is likely to evolve as the CGI design matures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا