ترغب بنشر مسار تعليمي؟ اضغط هنا

Cerberus: A three-headed instrument for the OARPAF telescope

60   0   0.0 ( 0 )
 نشر من قبل Davide Ricci
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the preliminary design of Cerberus, a new scientific instrument for the alt-az, 80cm OARPAF telescope in the Ligurian mountains above Genoa, Italy. Cerberus will provide three focal stations at the Nasmyth focus, allowing: imaging and photometry with standard Johnson-Cousins UBVRI+Ha+Free filters, an on-axis guiding camera, and a tip-tilt lens for image stabilization up to 10Hz; long slit spectroscopy at R 5900 thanks to a LHIRES III spectrograph provided with a 1200l/mm grism; echelle spectroscopy at R 9300 using a FLECHAS spectrograph with optical fiber.

قيم البحث

اقرأ أيضاً

GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
CCAT-prime will be a 6-meter aperture telescope operating from sub-mm to mm wavelengths, located at 5600 meters elevation on Cerro Chajnantor in the Atacama Desert in Chile. Its novel crossed-Dragone optical design will deliver a high throughput, wid e field of view capable of illuminating much larger arrays of sub-mm and mm detectors than can existing telescopes. We present an overview of the motivation and design of Prime-Cam, a first-light instrument for CCAT-prime. Prime-Cam will house seven instrument modules in a 1.8 meter diameter cryostat, cooled by a dilution refrigerator. The optical elements will consist of silicon lenses, and the instrument modules can be individually optimized for particular science goals. The current design enables both broadband, dual-polarization measurements and narrow-band, Fabry-Perot spectroscopic imaging using multichroic transition-edge sensor (TES) bolometers operating between 190 and 450 GHz. It also includes broadband kinetic induction detectors (KIDs) operating at 860 GHz. This wide range of frequencies will allow excellent characterization and removal of galactic foregrounds, which will enable precision measurements of the sub-mm and mm sky. Prime-Cam will be used to constrain cosmology via the Sunyaev-Zeldovich effects, map the intensity of [CII] 158 $mu$m emission from the Epoch of Reionization, measure Cosmic Microwave Background polarization and foregrounds, and characterize the star formation history over a wide range of redshifts. More information about CCAT-prime can be found at www.ccatobservatory.org.
Hector will be the new massively-multiplexed integral field spectroscopy (IFS) instrument for the Anglo-Australian Telescope (AAT) in Australia and the next main dark-time instrument for the observatory. Based on the success of the SAMI instrument, w hich is undertaking a 3400-galaxy survey, the integral field unit (IFU) imaging fibre bundle (hexabundle) technology under-pinning SAMI is being improved to a new innovative design for Hector. The distribution of hexabundle angular sizes is matched to the galaxy survey properties in order to image 90% of galaxies out to 2 effective radii. 50-100 of these IFU imaging bundles will be positioned by starbug robots across a new 3-degree field corrector top end to be purpose-built for the AAT. Many thousand fibres will then be fed into new replicable spectrographs. Fundamentally new science will be achieved compared to existing instruments due to Hectors wider field of view (3 degrees), high positioning efficiency using starbugs, higher spectroscopic resolution (R~3000-5500 from 3727-7761A, with a possible redder extension later) and large IFUs (up to 30 arcsec diameter with 61-217 fibre cores). A 100,000 galaxy IFS survey with Hector will decrypt how the accretion and merger history and large-scale environment made every galaxy different in its morphology and star formation history. The high resolution, particularly in the blue, will make Hector the only instrument to be able to measure higher-order kinematics for galaxies down to much lower velocity dispersion than in current large IFS galaxy surveys, opening up a wealth of new nearby galaxy science.
PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The i nstrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing<1, tau0>3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.
We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibe rs from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا