ﻻ يوجد ملخص باللغة العربية
We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 micron [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 micron flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5+-0.1 Msun of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 Msun of amorphous carbon and 0.5 Msun of silicates, totalling 0.8 Msun of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
We present the late-time optical light curve of the ejecta of SN 1987A measured from HST imaging observations spanning the past 17 years. We find that the flux from the ejecta declined up to around year 2001, powered by the radioactive decay of 44Ti.
We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 tran
We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the out
Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy
We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 lightyears away. The observations reveal the presence of a population of col