ترغب بنشر مسار تعليمي؟ اضغط هنا

The morphology of the ejecta in Supernova 1987A: a study over time and wavelength

110   0   0.0 ( 0 )
 نشر من قبل Josefin Larsson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the outer hydrogen-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]/[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before ~5,000 days, to a more irregular, edge-brightened morphology thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before ~5,000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]/[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H-alpha and the [Si I]/[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor. The H-alpha emission extends to higher velocities than [Si I]/[Fe II] as expected. There is no clear symmetry axis for all the emission and we are unable to model the ejecta distribution with a simple ellipsoid model with a uniform distribution of dust. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.

قيم البحث

اقرأ أيضاً

We present the late-time optical light curve of the ejecta of SN 1987A measured from HST imaging observations spanning the past 17 years. We find that the flux from the ejecta declined up to around year 2001, powered by the radioactive decay of 44Ti. Then the flux started to increase, more than doubling by the end of 2009. We show that the increase is the result of energy deposited by X-rays produced in the interaction with the circumstellar medium. We suggest that the change of the dominant energy input to the ejecta, from internal to external, marks the transition from supernova to supernova remnant. The details of the observations and the modelling are described in the accompanying supplementary information.
256 - M. Matsuura 2014
We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous obse rvations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 micron [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 micron flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5+-0.1 Msun of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 Msun of amorphous carbon and 0.5 Msun of silicates, totalling 0.8 Msun of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of $^{56}$Ni, and the late-time image, the locus of excitation by $^{44}$Ti, are most naturally accounted for by sharing a common position angle of about 14degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geometry has been fixed in time and throughout the ejecta. The Bochum event and the Doppler kinematics of the [Ca II]/[O II] emission in spatially resolved HST spectra of the ejecta can be consistently integrated into this geometry. The radioactive clump is deduced to fall approximately along the axis of the inner circumstellar ring and therefore to be redshifted in the North whereas the [Ca II]/[O II] 7300 AA emission is redshifted in the South. We present a jet-induced model for the explosion and argue that such a model can account for many of the observed asymmetries. In the jet models, the oxygen and calcium are not expected to be distributed along the jet, but primarily in an expanding torus that shares the plane and northern blue shift of the inner circumstellar ring.
168 - Masha Lakicevic 2012
The proximity of core-collapse Supernova 1987A (SN1987A) in the Large Magellanic Cloud (LMC) and its rapid evolution make it a unique case study of the development of a young supernova remnant. We aim at resolving the remnant of SN1987A for the first time in the 3-mm band (at 94 GHz). We observed the source at 3-mm wavelength with a 750-m configuration of the Australia Telescope Compact Array (ATCA). We compare the image with a recent 3-cm image and with archival X-ray images. We present a diffraction-limited image with a resolution of 0.7, revealing the ring structure seen at lower frequencies and at other wavebands. The emission peaks in the eastern part of the ring. The 3-mm image bears resemblance to early X-ray images (from 1999-2000). We place an upper limit of 1 mJy (2 sigma) on any discrete source of emission in the centre (inside of the ring). The integrated flux density at 3 mm has doubled over the six years since the previous observations at 3 mm. At 3 mm - i.e. within the operational domain of the Atacama Large Millimeter/submillimeter Array (ALMA) - SN1987A appears to be dominated by synchrotron radiation from the inner rim of the equatorial ring, characterised by moderately-weak shocks. There is no clear sign of emission of a different nature, but the current limits do not rule out such component altogether.
The evolution of the shape and size of the ejecta of SN 1987A is analyzed over a period of ~ 8 years based on HST images and spectra taken between 1278 and 4336 days after the supernova outburst. We combine both proprietary and archival HST data obta ined with the FOC, WFPC2 and STIS. The low resolution near-UV prism FOC spectrum obtained at day 3043 has not been described previously. Although the FWHM of the ejecta grew linearly over the time span studied, the appearance of the SN envelope also changed markedly with wavelength. At visible wavelengths (lambda ~ 5000 Angstrom) the ejecta became progressively more elongated, reaching an ellipticity epsilon ~ 0.25 by day 4000. In the near-UV (lambda ~ 2500 AA), the ejecta remained closely circular (epsilon <= 0.1) and ~ 50% larger in angular extent than in the visible. The FOC prism observations show that the large extent of the SN envelope is confined to a grouping of resonance lines spanning Mg I 2852, Mg II 2795,2802 and several Fe II multiplets -- thereby confirming that the larger size of the debris in the near-UV is due to scattering in these optically thick transitions compared to the optically thin forbidden and semi-forbidden transitions that dominate the visible spectrum. The available data are not of sufficient quality to detect the slight deviation from linear expansion expected for the outermost regions of the near-UV images as predicted by Chugai et al. (1997).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا