ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Probes of Nonequilibrium Hole Spin Relaxation in Ferromagnetic Semiconductor GaMnAs

337   0   0.0 ( 0 )
 نشر من قبل Aaron Patz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We directly measure the hole spin lifetime in ferromagnetic GaMnAs via time- and polarization-resolved spectroscopy. Below the Curie temperature Tc, an ultrafast photoexcitation with linearly-polarized light is shown to create a non-equilibrium hole spin population via the dynamical polarization of holes through p-d exchange scattering with ferromagnetically-ordered Mn spins, and we characterize their relaxation dynamics. The observed relaxation consists of a distinct three-step recovery : (i) femtosecond (fs) hole spin relaxation ~ $160-200 fs, (ii) picosecond (ps) hole energy relaxation ~ 1-2 ps, and (iii) a coherent, damped Mn spin precession with a period of ~ 250 ps. The transient amplitude of the hole spin component diminishes with increasing temperature, directly following the ferromagnetic order, while the hole energy amplitude shows negligible temperature change, consistent with our interpretation. Our results thus establish the hole spin lifetimes in ferromagnetic semiconductors and demonstrate a novel spectroscopy method for studying non-equilibrium hole spins in the presence of correlation and magnetic order.

قيم البحث

اقرأ أيضاً

224 - J. Wang , L. Cywinski , C. Sun 2008
We have studied ultrafast photoinduced demagnetization in GaMnAs via two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap midinfrared pump pulses strongly excite the valence band, while near-infrared probe pulses reveal sub-picose cond demagnetization that is followed by an ultrafast ($sim$1 ps) partial recovery of the Kerr signal. Through comparison with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation of holes. We propose that the dynamical polarization of holes through $p$-$d$ scattering is the source of the observed probe signal. These results support the physical picture of femtosecond demagnetization proposed earlier for InMnAs, identifying the critical roles of both energy and spin relaxation of hot holes.
170 - J. Wang , X. Liu 2008
We report a femtosecond response in photoinduced magnetization rotation in the ferromagnetic semiconductor GaMnAs, which allows for detection of a four-state magnetic memory at the femtosecond time scale. The temporal profile of this cooperative magn etization rotation exhibits a discontinuity that reveals two distinct temporal regimes, marked by the transition from a highly non-equilibrium, carrier-mediated regime within the first 200 fs, to a thermal, lattice-heating picosecond regime.
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of the GaMnAs layer with applying out of plane magnetic field. After low temperature annealing, the magnetic easy axis of the AlGaMnAs layer switches from out of plane into in-plane and the interlayer coupling efficiency is reduced from up to 0.6 to less than 0.4. However, the magnetic coupling penetration depth for the annealed device is twice that of the as-grown bilayer device.
The resistivity, temperature, and magnetic field dependence of the anomalous Hall effect in a series of metallic Ga1-xMnxAs thin films with 0.015=<x=<0.08 is presented. A quadratic dependence of the anomalous Hall resistance on the resistivity is obs erved, with a magnitude which is in agreement with Berry phase theories of the anomalous Hall effect in dilute magnetic semiconductors.
Through time-resolved two-color magneto-optical Kerr spectroscopy we have demonstrated that photogenerated transient carriers decrease the coercivity of ferromagnetic InMnAs at low temperatures. This transient ``softening persists only during the car rier lifetime ($sim$ 2 ps) and returns to its original value as soon as the carriers recombine to disappear. We discuss the origin of this unusual phenomenon in terms of carrier-enhanced ferromagnetic exchange interactions between Mn ions and propose an entirely nonthermal scheme for magnetization reversal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا