ترغب بنشر مسار تعليمي؟ اضغط هنا

MilkyWay@home: Harnessing volunteer computers to constrain dark matter in the Milky Way

292   0   0.0 ( 0 )
 نشر من قبل Heidi Newberg
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MilkyWay@home is a volunteer computing project that allows people from every country in the world to volunteer their otherwise idle processors to Milky Way research. Currently, more than 25,000 people (150,000 since November 9, 2007) contribute about half a PetaFLOPS of computing power to our project. We currently run two types of applications: one application fits the spatial density profile of tidal streams using statistical photometric parallax, and the other application finds the N-body simulation parameters that produce tidal streams that best match the measured density profile of known tidal streams. The stream fitting application is well developed and is producing published results. The Sagittarius dwarf leading tidal tail has been fit, and the algorithm is currently running on the trailing tidal tail and bifurcated pieces. We will soon have a self-consistent model for the density of the smooth component of the stellar halo and the largest tidal streams. The $N$-body application has been implemented for fitting dwarf galaxy progenitor properties only, and is in the testing stages. We use an Earth-Mover Distance method to measure goodness-of-fit for density of stars along the tidal stream. We will add additional spatial dimensions as well as kinematic measures in a piecemeal fashion, with the eventual goal of fitting the orbit and parameters of the Milky Way potential (and thus the density distribution of dark matter) using multiple tidal streams.



قيم البحث

اقرأ أيضاً

We have developed a method for estimating the properties of the progenitor dwarf galaxy from the tidal stream of stars that were ripped from it as it fell into the Milky Way. In particular, we show that the mass and radial profile of a progenitor dwa rf galaxy evolved along the orbit of the Orphan Stream, including the stellar and dark matter components, can be reconstructed from the distribution of stars in the tidal stream it produced. We use MilkyWay@home, a PetaFLOPS-scale distributed supercomputer, to optimize our dwarf galaxy parameters until we arrive at best-fit parameters. The algorithm fits the dark matter mass, dark matter radius, stellar mass, radial profile of stars, and orbital time. The parameters are recovered even though the dark matter component extends well past the half light radius of the dwarf galaxy progenitor, proving that we are able to extract information about the dark matter halos of dwarf galaxies from the tidal debris. Our simulations assumed that the Milky Way potential, dwarf galaxy orbit, and the form of the density model for the dwarf galaxy were known exactly; more work is required to evaluate the sources of systematic error in fitting real data. This method can be used to estimate the dark matter content in dwarf galaxies without the assumption of virial equilibrium that is required to estimate the mass using line-of-sight velocities. This demonstration is a first step towards building an infrastructure that will fit the Milky Way potential using multiple tidal streams.
202 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
The following is a comment on the recent letter by Iocco et al. (2015, arXiv:1502.03821) where the authors claim to have found ...convincing proof of the existence of dark matter.... The letter in question presents a compilation of recent rotation cu rve observations for the Milky Way, together with Newtonian rotation curve estimates based on recent baryonic matter distribution measurements. A mismatch between the former and the latter is then presented as evidence for dark matter. Here we show that the reported discrepancy is the well known gravitational anomaly which consistently appears when dynamical accelerations approach the critical Milgrom acceleration a_0 = 1.2 times 10^{-10} m / s^2. Further, using a simple modified gravity force law, the baryonic models presented in Iocco et al. (2015), yield dynamics consistent with the observed rotation values.
This is a brief rebuttal to arXiv:1502.03821, which claims to provide the first observational proof of dark matter interior to the solar circle. We point out that this result is not new, and can be traced back at least a quarter century.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا