ترغب بنشر مسار تعليمي؟ اضغط هنا

Flat histogram quantum Monte Carlo for analytic continuation to real time

204   0   0.0 ( 0 )
 نشر من قبل Efstratios Manousakis
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Quantum Monte Carlo (QMC) method can yield the imaginary-time dependence of a correlation function $C(tau)$ of an operator $hat O$. The analytic continuation to real-time proceeds by means of a numerical inversion of these data to find the response function or spectral density $A(omega)$ corresponding to $hat O$. Such a technique is very sensitive to the statistical errors in $C(tau)$ especially for large values of $tau$, when we are interested in the low-energy excitations. In this paper, we find that if we use the flat histogram technique in the QMC method, in such a way to make the {it histogram of} $C(tau)$ flat, the results of the analytic continuation for low-energy excitations improve using the same amount of computational time. To demonstrate the idea we select an exactly soluble version of the single-hole motion in the $t-J$ model and the diagrammatic Monte Carlo technique.



قيم البحث

اقرأ أيضاً

The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Mon te method and we term the improved version Flat Histogram Diagrammatic Monte Carlo method. We demonstrate the superiority of the method over the standard Diag-MC in extracting the long-imaginary-time behavior of the Greens function, without incorporating any a priori knowledge about this function, by applying the technique to the polaron problem
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic M onte Carlo sampling of the real-time perturbation theory along the Keldysh contour. We benchmark the method on a non-interacting resonant level model and, as a first non-trivial application, we study zero temperature non-equilibrium transport through a vibrating molecule.
162 - G. Bertaina , D.E. Galli , 2016
The term analytic continuation emerges in many branches of Mathematics, Physics, and, more generally, applied Science. Generally speaking, in many situations, given some amount of information that could arise from experimental or numerical measuremen ts, one is interested in extending the domain of such information, to infer the values of some variables which are central for the study of a given problem. For example, focusing on Condensed Matter Physics, state-of-the-art methodologies to study strongly correlated quantum physical systems are able to yield accurate estimations of dynamical correlations in imaginary time. Those functions have to be extended to the whole complex plane, via analytic continuation, in order to infer real-time properties of those physical systems. In this Review, we will present the Genetic Inversion via Falsification of Theories method, which allowed us to compute dynamical properties of strongly interacting quantum many--body systems with very high accuracy. Even though the method arose in the realm of Condensed Matter Physics, it provides a very general framework to face analytic continuation problems that could emerge in several areas of applied Science. Here we provide a pedagogical review that elucidates the approach we have developed.
We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlato rs of up to six particles at four times. As an application we consider continuous-time quantum Monte Carlo simulations in the hybridization expansion, which hitherto suffered from notoriously high noise levels at large Matsubara frequencies. Employing the derived symmetric improved estimators overcomes this problem.
We present a continuous-time Monte Carlo method for quantum impurity models, which combines a weak-coupling expansion with an auxiliary-field decomposition. The method is considerably more efficient than Hirsch-Fye and free of time discretization err ors, and is particularly useful as impurity solver in large cluster dynamical mean field theory (DMFT) calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا