ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface acoustic wave devices on bulk ZnO at low temperature

140   0   0.0 ( 0 )
 نشر من قبل Einar Bui Magnusson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of {lambda} = 4 and 6 {mu}m and a one-port resonator at a wavelength of {lambda} = 1.6 {mu}m. We find that the SAW velocity is temperature dependent, reaching $v simeq 2.68$ km/s at 10mK. Our resonator reaches a maximum quality factor of $Q_i simeq 1.5times 10^5$, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above about 200 K.



قيم البحث

اقرأ أيضاً

We measure the phase velocities of surface acoustic waves (SAWs) propagating at different crystal orientations on (001)-cut GaAs substrates and their temperature dependance. We design and fabricate sets of interdigital transducers (IDTs) to induce 4 {mu}m SAWs via the inverse piezoelectric (PZE) effect between the PZE [110] direction (set as {theta} = 0{deg}) and the non-PZE [100] direction ({theta} = 45{deg}) on GaAs. We also prepare ZnO film sputtered GaAs substrates in order to launch SAWs efficiently by IDTs even in the non-PZE direction. We quantify acoustic velocities between 1.4 and 300 K from the resonant frequencies in the S11 parameter using a network analyzer. We observe parabolic velocity-temperature trends at all {theta}-values both on GaAs and ZnO/GaAs substrates. Below 200 K, in ZnO/GaAs substrates slower SAW modes appear around the [110] direction, which are unseen at RT.
Long needle-shaped single crystals of Zn1-xCoxO were grown at low temperatures using a molten salt solvent technique, up to x=0.10. The conduction process at low temperatures is determined to be by Mott variable range hopping. Both pristine and cobal t doped crystals clearly exhibit a crossover from negative to positive magnetoresistance as the temperature is decreased. The positive magnetoresistance of the Zn1-xCoxO single crystals increases with increased Co concentration and reaches up to 20% at low temperatures (2.5 K) and high fields (>1 T). SQUID magnetometry confirms that the Zn1-xCoxO crystals are predominantly paramagnetic in nature and the magnetic response is independent of Co concentration. The results indicate that cobalt doping of single crystalline ZnO introduces localized electronic states and isolated Co2+ ions into the host matrix, but that the magnetotransport and magnetic properties are decoupled.
Atomic precision advanced manufacturing (APAM) offers creation of donor devices in an atomically thin layer doped beyond the solid solubility limit, enabling unique device physics. This presents an opportunity to use APAM as a pathfinding platform to investigate digital electronics at the atomic limit. Scaling to smaller transistors is increasingly difficult and expensive, necessitating the investigation of alternative fabrication paths that extend to the atomic scale. APAM donor devices can be created using a scanning tunneling microscope (STM). However, these devices are not currently compatible with industry standard fabrication processes. There exists a tradeoff between low thermal budget (LT) processes to limit dopant diffusion and high thermal budget (HT) processes to grow defect-free layers of epitaxial Si and gate oxide. To this end, we have developed an LT epitaxial Si cap and LT deposited Al2O3 gate oxide integrated with an atomically precise single-electron transistor (SET) that we use as an electrometer to characterize the quality of the gate stack. The surface-gated SET exhibits the expected Coulomb blockade behavior. However, the leverage of the gate over the SET is limited by defects in the layers above the SET, including interfaces between the Si and oxide, and structural and chemical defects in the Si cap. We propose a more sophisticated gate stack and process flow that is predicted to improve performance in future atomic precision devices.
Opto-mechanical interactions in planar photonic integrated circuits draw great interest in basic research and applications. However, opto-mechanics is practically absent in the most technologically significant photonics platform: silicon on insulator . Previous demonstrations required the under-etching and suspension of silicon structures. Here we present surface acoustic wave-photonic devices in silicon on insulator, up to 8 GHz frequency. Surface waves are launched through absorption of modulated pump light in metallic gratings and thermoelastic expansion. The surface waves are detected through photo-elastic modulation of an optical probe in standard race-track resonators. Devices do not involve piezo-electric actuation, suspension of waveguides or hybrid material integration. Wavelength conversion of incident microwave signals and acoustic true time delays up to 40 ns are demonstrated on-chip. Lastly, discrete-time microwave-photonic filters with up to six taps and 20 MHz wide passbands are realized using acoustic delays. The concept is suitable for integrated microwave-photonics signal processing
By studying Fe-doped ZnO pellets and thin films with various x-ray spectroscopic techniques, and complementing this with density functional theory calculations, we find that Fe-doping in bulk ZnO induces isovalent (and isostructural) cation substitut ion (Fe2+ -> Zn2+). In contrast to this, Fe-doping near the surface produces both isovalent and heterovalent substitution (Fe3+ -> Zn2+). The calculations performed herein suggest that the most likely defect structure is the single or double substitution of Zn with Fe, although, if additional oxygen is available, then Fe substitution with interstitial oxygen is even more energetically favourable. Furthermore, it is found that ferromagnetic states are energetically unfavourable, and ferromagnetic ordering is likely to be realized only through the formation of a secondary phase (i.e. ZnFe2O4), or codoping with Cu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا