ﻻ يوجد ملخص باللغة العربية
Many in-hospital mortality risk prediction scores dichotomize predictive variables to simplify the score calculation. However, hard thresholding in these additive stepwise scores of the form add x points if variable v is above/below threshold t may lead to critical failures. In this paper, we seek to develop risk prediction scores that preserve clinical knowledge embedded in features and structure of the existing additive stepwise scores while addressing limitations caused by variable dichotomization. To this end, we propose a novel score structure that relies on a transformation of predictive variables by means of nonlinear logistic functions facilitating smooth differentiation between critical and normal values of the variables. We develop an optimization framework for inferring parameters of the logistic functions for a given patient population via cyclic block coordinate descent. The parameters may readily be updated as the patient population and standards of care evolve. We tested the proposed methodology on two populations: (1) brain trauma patients admitted to the intensive care unit of the Dell Childrens Medical Center of Central Texas between 2007 and 2012, and (2) adult ICU patient data from the MIMIC II database. The results are compared with those obtained by the widely used PRISM III and SOFA scores. The prediction power of a score is evaluated using area under ROC curve, Youdens index, and precision-recall balance in a cross-validation study. The results demonstrate that the new framework enables significant performance improvements over PRISM III and SOFA in terms of all three criteria.
The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities. Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and c
Objective: This study illustrates the ambiguity of ROC in evaluating two classifiers of 90-day LVAD mortality. This paper also introduces the precision recall curve (PRC) as a supplemental metric that is more representative of LVAD classifiers perfor
The use of machine learning systems to support decision making in healthcare raises questions as to what extent these systems may introduce or exacerbate disparities in care for historically underrepresented and mistreated groups, due to biases impli
Recent studies have highlighted the high correlation between cardiovascular diseases (CVD) and lung cancer, and both are associated with significant morbidity and mortality. Low-Dose CT (LCDT) scans have led to significant improvements in the accurac
Although recent multi-task learning methods have shown to be effective in improving the generalization of deep neural networks, they should be used with caution for safety-critical applications, such as clinical risk prediction. This is because even