ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing Optimal Mortality Risk Prediction Scores that Preserve Clinical Knowledge

431   0   0.0 ( 0 )
 نشر من قبل Natalia Arzeno
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Many in-hospital mortality risk prediction scores dichotomize predictive variables to simplify the score calculation. However, hard thresholding in these additive stepwise scores of the form add x points if variable v is above/below threshold t may lead to critical failures. In this paper, we seek to develop risk prediction scores that preserve clinical knowledge embedded in features and structure of the existing additive stepwise scores while addressing limitations caused by variable dichotomization. To this end, we propose a novel score structure that relies on a transformation of predictive variables by means of nonlinear logistic functions facilitating smooth differentiation between critical and normal values of the variables. We develop an optimization framework for inferring parameters of the logistic functions for a given patient population via cyclic block coordinate descent. The parameters may readily be updated as the patient population and standards of care evolve. We tested the proposed methodology on two populations: (1) brain trauma patients admitted to the intensive care unit of the Dell Childrens Medical Center of Central Texas between 2007 and 2012, and (2) adult ICU patient data from the MIMIC II database. The results are compared with those obtained by the widely used PRISM III and SOFA scores. The prediction power of a score is evaluated using area under ROC curve, Youdens index, and precision-recall balance in a cross-validation study. The results demonstrate that the new framework enables significant performance improvements over PRISM III and SOFA in terms of all three criteria.

قيم البحث

اقرأ أيضاً

The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities. Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and c riticism. However, the appropriateness of this framework is unclear due to both ethical as well as technical considerations, the latter of which include trade-offs between measures of fairness and model performance that are not well-understood for predictive models of clinical outcomes. To inform the ongoing debate, we conduct an empirical study to characterize the impact of penalizing group fairness violations on an array of measures of model performance and group fairness. We repeat the analyses across multiple observational healthcare databases, clinical outcomes, and sensitive attributes. We find that procedures that penalize differences between the distributions of predictions across groups induce nearly-universal degradation of multiple performance metrics within groups. On examining the secondary impact of these procedures, we observe heterogeneity of the effect of these procedures on measures of fairness in calibration and ranking across experimental conditions. Beyond the reported trade-offs, we emphasize that analyses of algorithmic fairness in healthcare lack the contextual grounding and causal awareness necessary to reason about the mechanisms that lead to health disparities, as well as about the potential of algorithmic fairness methods to counteract those mechanisms. In light of these limitations, we encourage researchers building predictive models for clinical use to step outside the algorithmic fairness frame and engage critically with the broader sociotechnical context surrounding the use of machine learning in healthcare.
Objective: This study illustrates the ambiguity of ROC in evaluating two classifiers of 90-day LVAD mortality. This paper also introduces the precision recall curve (PRC) as a supplemental metric that is more representative of LVAD classifiers perfor mance in predicting the minority class. Background: In the LVAD domain, the receiver operating characteristic (ROC) is a commonly applied metric of performance of classifiers. However, ROC can provide a distorted view of classifiers ability to predict short-term mortality due to the overwhelmingly greater proportion of patients who survive, i.e. imbalanced data. Methods: This study compared the ROC and PRC for the outcome of two classifiers for 90-day LVAD mortality for 800 patients (test group) recorded in INTERMACS who received a continuous-flow LVAD between 2006 and 2016 (mean age of 59 years; 146 females vs. 654 males) in which mortality rate is only %8 at 90-day (imbalanced data). The two classifiers were HeartMate Risk Score (HMRS) and a Random Forest (RF). Results: The ROC indicates fairly good performance of RF and HRMS classifiers with Area Under Curves (AUC) of 0.77 vs. 0.63, respectively. This is in contrast with their PRC with AUC of 0.43 vs. 0.16 for RF and HRMS, respectively. The PRC for HRMS showed the precision rapidly dropped to only 10% with slightly increasing sensitivity. Conclusion: The ROC can portray an overly-optimistic performance of a classifier or risk score when applied to imbalanced data. The PRC provides better insight about the performance of a classifier by focusing on the minority class.
The use of machine learning systems to support decision making in healthcare raises questions as to what extent these systems may introduce or exacerbate disparities in care for historically underrepresented and mistreated groups, due to biases impli citly embedded in observational data in electronic health records. To address this problem in the context of clinical risk prediction models, we develop an augmented counterfactual fairness criteria to extend the group fairness criteria of equalized odds to an individual level. We do so by requiring that the same prediction be made for a patient, and a counterfactual patient resulting from changing a sensitive attribute, if the factual and counterfactual outcomes do not differ. We investigate the extent to which the augmented counterfactual fairness criteria may be applied to develop fair models for prolonged inpatient length of stay and mortality with observational electronic health records data. As the fairness criteria is ill-defined without knowledge of the data generating process, we use a variational autoencoder to perform counterfactual inference in the context of an assumed causal graph. While our technique provides a means to trade off maintenance of fairness with reduction in predictive performance in the context of a learned generative model, further work is needed to assess the generality of this approach.
Recent studies have highlighted the high correlation between cardiovascular diseases (CVD) and lung cancer, and both are associated with significant morbidity and mortality. Low-Dose CT (LCDT) scans have led to significant improvements in the accurac y of lung cancer diagnosis and thus the reduction of cancer deaths. However, the high correlation between lung cancer and CVD has not been well explored for mortality prediction. This paper introduces a knowledge-based analytical method using deep convolutional neural network (CNN) for all-cause mortality prediction. The underlying approach combines structural image features extracted from CNNs, based on LDCT volume in different scale, and clinical knowledge obtained from quantitative measurements, to comprehensively predict the mortality risk of lung cancer screening subjects. The introduced method is referred to here as the Knowledge-based Analysis of Mortality Prediction Network, or KAMP-Net. It constitutes a collaborative framework that utilizes both imaging features and anatomical information, instead of completely relying on automatic feature extraction. Our work demonstrates the feasibility of incorporating quantitative clinical measurements to assist CNNs in all-cause mortality prediction from chest LDCT images. The results of this study confirm that radiologist defined features are an important complement to CNNs to achieve a more comprehensive feature extraction. Thus, the proposed KAMP-Net has shown to achieve a superior performance when compared to other methods. Our code is available at https://github.com/DIAL-RPI/KAMP-Net.
Although recent multi-task learning methods have shown to be effective in improving the generalization of deep neural networks, they should be used with caution for safety-critical applications, such as clinical risk prediction. This is because even if they achieve improved task-average performance, they may still yield degraded performance on individual tasks, which may be critical (e.g., prediction of mortality risk). Existing asymmetric multi-task learning methods tackle this negative transfer problem by performing knowledge transfer from tasks with low loss to tasks with high loss. However, using loss as a measure of reliability is risky since it could be a result of overfitting. In the case of time-series prediction tasks, knowledge learned for one task (e.g., predicting the sepsis onset) at a specific timestep may be useful for learning another task (e.g., prediction of mortality) at a later timestep, but lack of loss at each timestep makes it difficult to measure the reliability at each timestep. To capture such dynamically changing asymmetric relationships between tasks in time-series data, we propose a novel temporal asymmetric multi-task learning model that performs knowledge transfer from certain tasks/timesteps to relevant uncertain tasks, based on feature-level uncertainty. We validate our model on multiple clinical risk prediction tasks against various deep learning models for time-series prediction, which our model significantly outperforms, without any sign of negative transfer. Further qualitative analysis of learned knowledge graphs by clinicians shows that they are helpful in analyzing the predictions of the model. Our final code is available at https://github.com/anhtuan5696/TPAMTL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا